| [1] |
柯平超,吴天楠,刘亚洁,等. 含铀废水处理技术进展[J]. 工业水处理,2023,43(9):20-31.
|
|
KE Pingchao, WU Tiannan, LIU Yajie,et al. Progress in treatment technology of uranium-containing wastewater[J]. Industrial Water Treatment,2023,43(9):20-31.
|
| [2] |
连晓燕,王东田,钟宇,等. 混凝法处理工业含锑废水研究进展[J]. 工业水处理,2023,43(10):53-62.
|
|
LIAN Xiaoyan, WANG Dongtian, ZHONG Yu,et al. Research progress on the treatment of industrial antimony-containing wastewater by coagulation[J]. Industrial Water Treatment,2023,43(10):53-62.
|
| [3] |
李俊,李芬芬,何彩彩,等. 生物处理技术去除难降解有机物的研究进展[J]. 应用化工,2022,51(2):547-550.
|
|
LI Jun, LI Fenfen, HE Caicai,et al. Research progress of biological treatment technology for the removal of refractory organic compounds[J]. Applied Chemical Industry,2022,51(2):547-550.
|
| [4] |
WANG Huijie, LI Xin, ZHAO Xiaoxue,et al. A review on heterogeneous photocatalysis for environmental remediation:From semiconductors to modification strategies[J]. Chinese Journal of Catalysis, 2022, 43(2):178-214. doi: 10.1016/s1872-2067(21)63910-4
|
| [5] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. doi: 10.1038/238037a0
|
| [6] |
DONG Xiaobin, YANG Ping, LIU Yunshi,et al. Morphology evolution of one-dimensional ZnO nanostructures towards enhanced photocatalysis performance[J]. Ceramics International, 2016, 42(1):518-526. doi: 10.1016/j.ceramint.2015.08.140
|
| [7] |
KUMAR S, KARTHIKEYAN S, LEE A F. g-C 3N 4-based nanomaterials for visible light-driven photocatalysis[J]. Catalysts, 2018, 8(2):74. doi: 10.3390/catal8020074
|
| [8] |
DU Chunyan, ZHANG Zhuo, YU Guanlong,et al. A review of metal organic framework(MOFs)-based materials for antibiotics removal via adsorption and photocatalysis[J]. Chemosphere, 2021, 272:129501. doi: 10.1016/j.chemosphere.2020.129501
|
| [9] |
LU Na, ZHANG Mingyi, JING Xuedong,et al. Electrospun semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation:Opportunities and challenges[J]. Energy & Environmental Materials, 2023, 6(2):e12338. doi: 10.1002/eem2.12338
|
| [10] |
LI Yanyan, SHEN Lifan, PUN E Y B,et al. Synergistic multi-selective photocatalysis and real-time optical thermometry of CsPbBr 3/BiOI/TiO 2@PAN flexible nanofibers[J]. Journal of Materials Chemistry A, 2023, 11(45):24861-24877. doi: 10.1039/d3ta04964g
|
| [11] |
CHEN Guihua, WONG N H, SUNARSO J,et al. Characterization of BiOBr/g-C 3N 4 heterostructures immobilized on flexible electrospun polyacrylonitrile nanofibers for photocatalytic applications[J]. Applied Surface Science, 2021, 569:151011. doi: 10.1016/j.apsusc.2021.151011
|
| [12] |
GARRIDO I, AZNAR-CERVANTES S, ALISTE M,et al. Photocatalytic performance of electrospun silk fibroin/ZnO mats to remove pesticide residues from water under natural sunlight[J]. Catalysts, 2020, 10(1):110. doi: 10.3390/catal10010110
|
| [13] |
JI Wen, WANG Xianbiao, DING Tianqi,et al. Electrospinning preparation of nylon-6@UiO-66-NH 2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(Ⅵ) in water[J]. Chemical Engineering Journal, 2023, 451:138973. doi: 10.1016/j.cej.2022.138973
|
| [14] |
JATOI A W, KIM I S, NI Qingqing. Cellulose acetate nanofibers embedded with AgNPs anchored TiO 2 nanoparticles for long term excellent antibacterial applications[J]. Carbohydrate Polymers, 2019, 207:640-649. doi: 10.1016/j.carbpol.2018.12.029
|
| [15] |
CHUANGCHOTE S, JITPUTTI J, SAGAWA T,et al. Photocatalytic activity for hydrogen evolution of electrospun TiO 2 nanofibers[J]. ACS Applied Materials & Interfaces, 2009, 1(5):1140-1143. doi: 10.1021/am9001474
|
| [16] |
CHEN Guihua, WANG Yong, FAN Liya,et al. Electrospun CuWO 4 nanofibers for visible light photocatalysis[J]. Materials Letters, 2019, 251:23-25. doi: 10.1016/j.matlet.2019.05.032
|
| [17] |
XIANG Haifan, LONG Yuhua, YU Xiaolan,et al. A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning[J]. CrystEngComm, 2011, 13(15):4856-4860. doi: 10.1039/c0ce00980f
|
| [18] |
ZHANG Peng, WANG Lijie, ZHANG Xi,et al. Three-dimensional porous networks of ultra-long electrospun SnO 2 nanotubes with high photocatalytic performance[J]. Nano-Micro Letters, 2015, 7(1):86-95. doi: 10.1007/s40820-014-0022-4
|
| [19] |
PAN Xinying, Hui NAN, YANG Pan,et al. Low-temperature and large-scale synthesis of carbon nanofiber web via electrospinning and their efficient removal of Cr(Ⅵ) ions[J]. ChemistrySelect, 2018, 3(37):10543-10548. doi: 10.1002/slct.201802844
|
| [20] |
Chade LÜ, SUN Jingxue, CHEN Gang,et al. Organic salt induced electrospinning gradient effect:Achievement of BiVO 4 nanotubes with promoted photocatalytic performance[J]. Applied Catalysis B:Environmental, 2017, 208:14-21. doi: 10.1016/j.apcatb.2017.02.058
|
| [21] |
LIN Dandan, WU Hui, ZHANG Rui,et al. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers[J]. Chemistry of Materials, 2009, 21(15):3479-3484. doi: 10.1021/cm900225p
|
| [22] |
BOYADJIEV S I, KÉRI O, BÁRDOS P,et al. TiO 2/ZnO and ZnO/TiO 2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing[J]. Applied Surface Science, 2017, 424:190-197. doi: 10.1016/j.apsusc.2017.03.030
|
| [23] |
CHANG Mengjie, CUI Wenna, WANG Hua,et al. Recoverable magnetic CoFe 2O 4/BiOI nanofibers for efficient visible light photocatalysis[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 562:127-135. doi: 10.1016/j.colsurfa.2018.11.016
|
| [24] |
CUI Lei, LIU Siliang, WANG Fangke,et al. Growth of uniform g-C 3N 4 shells on 1D TiO 2 nanofibers via vapor deposition approach with enhanced visible light photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 826:154001. doi: 10.1016/j.jallcom.2020.154001
|
| [25] |
SAHA D, HOINKIS T J, VAN BRAMER S E. Electrospun,flexible and reusable nanofiber mat of graphitic carbon nitride:Photocatalytic reduction of hexavalent chromium[J]. Journal of Colloid and Interface Science, 2020, 575:433-442. doi: 10.1016/j.jcis.2020.04.090
|
| [26] |
GALLAH H, MIGHRI F, AJJI A,et al. Flexible electrospun PET/TiO 2 nanofibrous structures:Morphology,thermal and mechanical properties[J]. Polymers for Advanced Technologies, 2020, 31(7):1612-1623. doi: 10.1002/pat.4890
|
| [27] |
LI Xiaoqiang, WANG Jidong, HU Zimu,et al. In situ polypyrrole polymerization enhances the photocatalytic activity of nanofibrous TiO 2/SiO 2 membranes[J]. Chinese Chemical Letters, 2018, 29(1):166-170. doi: 10.1016/j.cclet.2017.05.020
|
| [28] |
MU Jingbo, SHAO Changlu, GUO Zengcai,et al. High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures[J]. ACS Applied Materials & Interfaces, 2011, 3(2):590-596. doi: 10.1021/am101171a
|
| [29] |
ZHOU Meimei, ZOU Wei, ZHU Xuemei,et al. In situ growth of UIO-66-NH 2 on thermally stabilized electrospun polyacrylonitrile nanofibers for visible-light driven Cr(Ⅵ) photocatalytic reduction[J]. Journal of Solid State Chemistry, 2022, 307:122836. doi: 10.1016/j.jssc.2021.122836
|
| [30] |
PARK Y, KIM W, MONLLOR-SATOCA D,et al. Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles:Demonstration in aqueous suspension of dye-sensitized TiO 2 [J]. Journal of Physical Chemistry Letters, 2013, 4(1):189-194. doi: 10.1021/jz301881d
|
| [31] |
PANTHI G, PARK M, KIM H Y,et al. Electrospun Ag-CoF doped PU nanofibers:Effective visible light catalyst for photodegradation of organic dyes[J]. Macromolecular Research, 2014, 22(8):895-900. doi: 10.1007/s13233-014-2124-8
|
| [32] |
OVEISI M, MAHMOODI N M, ASLI M A. Facile and green synthesis of metal-organic framework/inorganic nanofiber using electrospinning for recyclable visible-light photocatalysis[J]. Journal of Cleaner Production, 2019, 222:669-684. doi: 10.1016/j.jclepro.2019.03.066
|
| [33] |
DU Fenqi, YANG Dongmei, KANG Tianxin,et al. SiO 2/Ga 2O 3 nanocomposite for highly efficient selective removal of cationic organic pollutant via synergistic electrostatic adsorption and photocatalysis[J]. Separation and Purification Technology, 2022, 295:121221. doi: 10.1016/j.seppur.2022.121221
|
| [34] |
WU Shuaiyu, YUAN Kaizhen, XU Xiaofeng,et al. ZnO/NiO coaxial heterojunction nanofibers with oxygen vacancies for efficient photocatalytic Congo red degradation and hydrogen peroxide production[J]. Ceramics International, 2024, 50(20):39636-39644. doi: 10.1016/j.ceramint.2024.07.343
|
| [35] |
SEDGHI R, MOAZZAMI H R, HOSSEINY DAVARANI S S,et al. A one step electrospinning process for the preparation of polyaniline modified TiO 2/polyacrylonitile nanocomposite with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2017, 695:1073-1079. doi: 10.1016/j.jallcom.2016.10.232
|
| [36] |
HE Rongan, LIU Haijuan, LIU Huimin,et al. S-scheme photocatalyst Bi 2O 3/TiO 2 nanofiber with improved photocatalytic performance[J]. Journal of Materials Science & Technology, 2020, 52:145-151. doi: 10.1016/j.jmst.2020.03.027
|
| [37] |
LI Shijie, SHEN Xiaofeng, LIU Jianshe,et al. Synthesis of Ta 3N 5/Bi 2MoO 6 core-shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts[J]. Environmental Science:Nano, 2017, 4(5):1155-1167. doi: 10.1039/c6en00706f
|
| [38] |
RONG Feng, LU Qifang, Haoxin MAI,et al. Hierarchically porous WO 3/CdWO 4 fiber-in-tube nanostructures featuring readily accessible active sites and enhanced photocatalytic effectiveness for antibiotic degradation in water[J]. ACS Applied Materials & Interfaces, 2021, 13(18):21138-21148. doi: 10.1021/acsami.0c22825
|
| [39] |
KRISHNASAMY L, KRISHNA K, SUBPIRAMANIYAM S. Photocatalytic degradation of atrazine in aqueous solution using La-doped ZnO/PAN nanofibers[J]. Environmental Science and Pollution Research International, 2022, 29(36):54282-54291. doi: 10.1007/s11356-022-19665-2
|
| [40] |
MOHAMED A, YOUSEF S,ALI S,et al. Highly efficient visible light photodegradation of Cr(Ⅵ) using electrospun MWCNTs-Fe 3O 4@PES nanofibers[J]. Catalysts, 2021, 11(7):868. doi: 10.3390/catal11070868
|
| [41] |
HU Lin, YAN Xuewu, ZHANG Xueji,et al. Integration of adsorption and reduction for uranium uptake based on SrTiO 3/TiO 2 electrospun nanofibers[J]. Applied Surface Science, 2018, 428:819-824. doi: 10.1016/j.apsusc.2017.09.216
|
| [42] |
BALUSAMY B, SENTHAMIZHAN A, CELEBIOGLU A,et al. Single nozzle electrospinning promoted hierarchical shell wall structured zinc oxide hollow tubes for water remediation[J]. Journal of Colloid and Interface Science, 2021, 593:162-171. doi: 10.1016/j.jcis.2021.02.089
|
| [43] |
WANG Qinqing, ZHOU Xueqing, JI Shuting,et al. Synthesis and photocatalysis of novel Z-scheme CeO 2/Ag-AgVO 3 heterojunction nanofibers and their efficient antibacterial properties[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106498. doi: 10.1016/j.jece.2021.106498
|
| [44] |
SITINJAK E M, MASMUR I, MARBUN N V M D,et al. Direct Z-scheme of n-type CuS/p-type ZnS@electrospun PVP nanofiber for the highly efficient catalytic reduction of 4-nitrophenol and mixed dyes[J]. RSC Advances, 2022, 12(25):16165-16173. doi: 10.1039/d2ra01476a
|
| [45] |
|
|
CAI Bohua, ZOU Wei, ZHU Xuemei,et al. Fabrication of PVA/SiO 2@BiOBr nanofibers and their photocatalytic characteristics[J]. Industrial Water Treatment, 2022, 42(6):140-145. doi: 10.19965/j.cnki.iwt.2021-0923
|
| [46] |
WANG Jichao, LI Ying, LI Heng,et al. A novel synthesis of oleophylic Fe 2O 3/polystyrene fibers by γ-Ray irradiation for the enhanced photocatalysis of 4-chlorophenol and 4-nitrophenol degradation[J]. Journal of Hazardous Materials, 2019, 379:120806. doi: 10.1016/j.jhazmat.2019.120806
|
| [47] |
CHEN Haisheng, HUANG Manhong, LIU Yanbiao,et al. Functionalized electrospun nanofiber membranes for water treatment:A review[J]. Science of the Total Environment, 2020, 739:139944. doi: 10.1016/j.scitotenv.2020.139944
|
| [48] |
LI Qinghao, DONG Min, LI Ru,et al. Enhancement of Cr(Ⅵ) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C 3N 4/TiO 2 nanofibers[J]. Carbohydrate Polymers, 2021, 253:117200. doi: 10.1016/j.carbpol.2020.117200
|
| [49] |
MAO Zhiping, XIE Ruyi, FU Dawei,et al. PAN supported Ag-AgBr@Bi 20TiO 32 electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability[J]. Separation and Purification Technology, 2017, 176:277-286. doi: 10.1016/j.seppur.2016.12.027
|