| [1] |
ZHU Wangchuan, LI Xiang, WANG Danjun,et al. Advanced photocatalytic uranium extraction strategies:Progress,challenges,and prospects[J]. Nanomaterials, 2023, 13(13):2005. doi: 10.3390/nano13132005
|
| [2] |
WEN Caimei, YAO Yijie, MENG Luyao,et al. Photocatalytic and electrocatalytic extraction of uranium by COFs:A review[J]. Industrial & Engineering Chemistry Research, 2023, 62(44):18230-18250. doi: 10.1021/acs.iecr.3c02831
|
| [3] |
GANDHI T P, SAMPATH P V, MALIYEKKAL S M. A critical review of uranium contamination in groundwater:Treatment and sludge disposal[J]. Science of the Total Environment, 2022, 825:153947. doi: 10.1016/j.scitotenv.2022.153947
|
| [4] |
PROTSAK I, STOCKHAUSEN M, BREWER A,et al. Advancing selective extraction:A novel approach for scandium,thorium,and uranium ion capture[J]. Small Science,2024,4(10):2400171.
|
| [5] |
WANG Huijing, CHEN Xiaofei, SU Ran,et al. Analysis of advanced nuclear fuel frontier technology on the basis of the patents[C]//Fifth International Conference on Green Energy,Environment,and Sustainable Development(GEESD 2024). Mianyang, 2024. doi: 10.1117/12.3044802
|
| [6] |
CHEN Jingling, HONG Zhenhua, CHEN Yilin,et al. One-step synthesis of sulfur-doped and nitrogen-deficient g-C 3N 4 photocatalyst for enhanced hydrogen evolution under visible light[J]. Materials Letters, 2015, 145:129-132. doi: 10.1016/j.matlet.2015.01.073
|
| [7] |
KUMAR S, KARTHIKEYAN S, LEE A F. G-C 3N 4-based nanomaterials for visible light-driven photocatalysis[J]. Catalysts, 2018, 8(2):74. doi: 10.3390/catal8020074
|
| [8] |
ZHU Xueteng, DENG Hexia, CHENG Gang. Facile construction of g-C 3N 4-W 18O 49 heterojunction with improved charge transfer for solar-driven CO 2 photoreduction[J]. Inorganic Chemistry Communications, 2021, 132:108814. doi: 10.1016/j.inoche.2021.108814
|
| [9] |
YE Yin, JIN Jian, LIANG Yanru,et al. Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method[J]. iScience, 2021, 24(11):103230. doi: 10.1016/j.isci.2021.103230
|
| [10] |
QIN Zemin, YE Yin, LI Cui,et al. Removal and recovery of aqueous uranium using photocatalytic reduction method:Performance and implication[J]. Separation and Purification Technology, 2023, 306:122670. doi: 10.1016/j.seppur.2022.122670
|
| [11] |
LI Ziqiang, XIE Zongbo, WANG Bo,et al. Gas-sculpted g-C 3N 4 for efficient photocatalytic reduction of U(Ⅵ)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326(3):1805-1817. doi: 10.1007/s10967-020-07458-1
|
| [12] |
YU Kaifu, TANG Li, CAO Xin,et al. Semiconducting metal-organic frameworks decorated with spatially separated dual cocatalysts for efficient uranium(Ⅵ) photoreduction[J]. Advanced Functional Materials, 2022, 32(20):2200315. doi: 10.1002/adfm.202200315
|
| [13] |
WU Fan, ZHANG Zhibin, CHENG Zhongping,et al. The enhanced photocatalytic reduction of uranium(Ⅵ) by ZnS@g-C 3N 4 heterojunctions under sunlight[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(2):1125-1133. doi: 10.1007/s10967-021-07784-y
|
| [14] |
WANG Xiaona, HAN Dongyuan, DING Yong,et al. A low-cost and high-yield approach for preparing g-C 3N 4 with a large specific surface area and enhanced photocatalytic activity by using formaldehyde-treated melamine[J]. Journal of Alloys and Compounds, 2020, 845:156293. doi: 10.1016/j.jallcom.2020.156293
|
| [15] |
Haiqin LÜ, HUANG Ying, KOODALI R T,et al. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2020, 12(11):12656-12667. doi: 10.1021/acsami.9b19057
|
| [16] |
CHANG Qing, YANG Shanshan, LI Liuqing,et al. Loading sulfur and nitrogen co-doped carbon dots onto g-C 3N 4 nanosheets for an efficient photocatalytic reduction of 4-nitrophenol[J]. Dalton Transactions, 2018, 47(18):6435-6443. doi: 10.1039/c8dt00735g
|
| [17] |
SONG Zengkai, YAN Chunpei, QIU Jialin,et al. Photocatalytic reduction of the uranium(Ⅵ) by ultra-thin porous g-C 3N 4 nanosheets synthesized via microwave-assisted[J]. Journal of Environmental Chemical Engineering, 2024, 12(5):113951. doi: 10.1016/j.jece.2024.113951
|
| [18] |
WU Zhiwen, WANG Bo, ZHU Yean,et al. Synthesis of crystalline carbon nitride with molten salt thermal treatment for efficient photocatalytic reduction and removal of U(Ⅵ)[J]. Research on Chemical Intermediates, 2023, 49(5):1801-1817. doi: 10.1007/s11164-023-04993-w
|
| [19] |
WANG Zexin, SONG Hao, CHEN Youliang,et al. Uranium resource of Europe:Development status,metallogenic provinces and geodynamic setting[J]. Energy Strategy Reviews, 2024, 54:101467. doi: 10.1016/j.esr.2024.101467
|
| [20] |
LIU Yuelin, YUAN Yilei, NI Shangyuan,et al. Construction of g-C 3N 4/Ag/TiO 2 Z-scheme photocatalyst and Its improved photocatalytic U(Ⅵ) reduction application in water[J]. Water Science and Technology, 2022, 85(9):2639-2651. doi: 10.2166/wst.2022.139
|
| [21] |
LI Zijie, WANG Lin, YUAN Liyong,et al. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite[J]. Journal of Hazardous Materials, 2015, 290:26-33. doi: 10.1016/j.jhazmat.2015.02.028
|
| [22] |
WEI Wei, LUO Jianqian, LIU Shujuan,et al. Enhancing the photocatalytic performance of g-C 3N 4 by using iron single-atom doping for the reduction of U(Ⅵ) in aqueous solutions[J]. Journal of Solid State Chemistry, 2022, 312:123160. doi: 10.1016/j.jssc.2022.123160
|
| [23] |
HONG Jiahui, MA Ran, WU Yunchao,et al. Experimental and theoretical identifications of durable Fe-N x configurations embedded in graphitic carbon nitride for uranium photoreduction[J]. Journal of Environmental Chemical Engineering, 2022, 10(5):108374. doi: 10.1016/j.jece.2022.108374
|
| [24] |
LIU Shuang, LUO Junhan, MAGUIRE D J,et al. Synthesis of carbon nitride in potassium hydroxide molten salt for efficient uranium extraction from radioactive wastewater[J]. Frontiers of Environmental Science & Engineering, 2024, 18(8):99. doi: 10.1007/s11783-024-1859-5
|
| [25] |
XUE Jinming, WANG Bo, LI Ziqiang,et al. Bromine doped g-C 3N 4 with enhanced photocatalytic reduction in U(Ⅵ)[J]. Research on Chemical Intermediates, 2022, 48(1):49-65. doi: 10.1007/s11164-021-04568-7
|
| [26] |
LU Changhai, ZHANG Peng, JIANG Shujuan,et al. Photocatalytic reduction elimination of UO 2 2+ pollutant under visible light with metal-free sulfur doped g-C 3N 4 photocatalyst[J]. Applied Catalysis B:Environmental, 2017, 200:378-385. doi: 10.1016/j.apcatb.2016.07.036
|
| [27] |
ZHANG Guangzhi, LEI Tao, WANG Dandan,et al. One-step synthesis of O,P co-doped g-C 3N 4 under air for photocatalytic reduction of uranium[J]. Journal of Solid State Chemistry, 2024, 339:124941. doi: 10.1016/j.jssc.2024.124941
|
| [28] |
LIU Xuecheng, ZHANG Qian, LIANG Liwei,et al. In situ growing of CoO nanoparticles on g-C 3N 4 composites with highly improved photocatalytic activity for hydrogen evolution[J]. Royal Society Open Science, 2019, 6(7):190433. doi: 10.1098/rsos.190433
|
| [29] |
SUN Zhehua, CHEN Diyun, CHEN Baidi,et al. Enhanced uranium(Ⅵ) adsorption by chitosan modified phosphate rock[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 547:141-147. doi: 10.1016/j.colsurfa.2018.02.043
|
| [30] |
PAN C, MAO Z, YUAN X,et al. Heterojunction Nanomedicine[J]. Adv Sci(Weinh), 2022, 9(11):e2105747. doi: 10.1002/advs.202105747
|
| [31] |
HE Feng, XIAO Qianxiang, CHEN Yin,et al. Synergistic reduction of U(Ⅵ) and selective oxidation of benzyl alcohol to prepare benzaldehyde via WO x /g-C 3N 4 [J]. Applied Catalysis B:Environmental, 2024, 343:123525. doi: 10.1016/j.apcatb.2023.123525
|
| [32] |
FU Hao, PAN Yuehua, CAI Zhenyu,et al. Bi 2O 3/g-C 3N 4 hollow core-shell Z-scheme heterojunction for photocatalytic uranium extraction[J]. Nano Research, 2024, 17(7):5845-5855. doi: 10.1007/s12274-024-6545-1
|
| [33] |
XUE Jinming, XIE Zongbo, WANG Bo,et al. Enhanced visible-light photocatalytic performance by PPy/CN composites for reduction of UO 2 2+ [J]. Journal of Solid State Chemistry, 2022, 315:123440. doi: 10.1016/j.jssc.2022.123440
|
| [34] |
ZHANG Lingyu, YANG Yuhao, ZHAO Nan,et al. MOF-modified C 3N 4 for efficient photo-induced removal of uranium under air without sacrificial agents[J]. Journal of Materials Chemistry A, 2024, 12(16):9651-9660. doi: 10.1039/d3ta07710a
|
| [35] |
LI Shutong, WANG Yun, WANG Jingjing,et al. Modifying g-C 3N 4 with oxidized Ti 3C 2 MXene for boosting photocatalytic U(Ⅵ) reduction performance[J]. Journal of Molecular Liquids, 2022, 346:117937. doi: 10.1016/j.molliq.2021.117937
|
| [36] |
WANG Zejian, HONG Jiajia, NG S F,et al. Recent progress of perovskite oxide in emerging photocatalysis landscape:Water splitting,CO2 reduction,and N2 fixation[J]. Acta Physico Chimica Sinica,2021,37(6):2011033.
|
| [37] |
MEI D P, XIAO D J, HUANG D X,et al. Enhanced photocatalytic reduction of U(Ⅵ) on SrTiO 3/g-C 3N 4 composites:Synergistic interaction[J]. European Journal of Inorganic Chemistry, 2022(7):e202101005. doi: 10.1002/ejic.202101005
|
| [38] |
LIU Chaolong, GUO Yadan, LI Shuaihang,et al. Mesoporous sulfur-doped g-C3N4@attapulgite composite as an advanced photocatalyst for efficiently uranium(Ⅵ) recovery from aqueous solutions[J]. Journal of Environmental Chemical Engineering,2024,12(3):112886.
|
| [39] |
XIE Yi, CHEN Changlun, REN Xuemei,et al. Coupling g-C 3N 4 nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution[J]. Journal of Colloid and Interface Science, 2019, 550:117-127. doi: 10.1016/j.jcis.2019.04.090
|
| [40] |
DAI Zhongran, LIAN Junjie, SUN Yusu,et al. Fabrication of g-C 3N 4/Sn 3O 4/Ni electrode for highly efficient photoelectrocatalytic reduction of U(Ⅵ)[J]. Chemical Engineering Journal, 2022, 433:133766. doi: 10.1016/j.cej.2021.133766
|
| [41] |
BAO Linfa, HAN Jingjing, WANG Huifang,et al. High efficient photoreduction of U(Ⅵ) by a new synergistic photocatalyst of Fe 3O 4 nanoparticle on GO/g-C 3N 4 composites[J]. Journal of Materials Research and Technology, 2022, 18:4248-4255. doi: 10.1016/j.jmrt.2022.04.102
|