1 |
XI Wenkui, MA Guang, WANG Xingang,et al. A multifunctional 3D Cd-based metal-organic frameworks for the highly luminescence sensitive detection of CrO4 2-/Cr2O7 2- and nitro aromatic compounds[J]. Polyhedron,2020,188:114691. doi:10.1016/j.poly.2020.114691
|
2 |
李易,陆锐,沈锦优,等. 废水中硝基芳香化合物检测方法研究进展[J]. 环境化学,2016,35(7):1474-1485. doi:10.7524/j.issn.0254-6108.2016.07.2015113001
|
|
LI Yi, LU Rui, SHEN Jinyou,et al. Detection methods for nitroaromatic compounds in wastewater[J]. Environmental Chemistry,2016,35(7):1474-1485. doi:10.7524/j.issn.0254-6108.2016.07.2015113001
|
3 |
LI Bingzhi, XU Xiangyang, ZHU Liang. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds[J]. Journal of Zhejiang University-Science B,2010,11(3):177-189. doi:10.1631/jzus.b0900291
|
4 |
LASKIN A, LASKIN J, NIZKORODOV S A. Chemistry of atmospheric brown carbon[J]. Chemical Reviews,2015,115(10):4335-4382. doi:10.1021/cr5006167
|
5 |
HEUSINKVELD H J, VAN VLIET A C, NIJSSEN P C G,et al. In vitro neurotoxic hazard characterisation of dinitrophenolic herbicides[J]. Toxicology Letters,2016,252:62-69. doi:10.1016/j.toxlet.2016.04.014
|
6 |
ARORA P K, SASIKALA C, RAMANA C V. Degradation of chlorinated nitroaromatic compounds[J]. Applied Microbiology and Biotechnology,2012,93(6):2265-2277. doi:10.1007/s00253-012-3927-1
|
7 |
ARYEE A A, MPATANI F M, HAN Runping,et al. A review on adsorbents for the remediation of wastewater:Antibacterial and adsorption study[J]. Journal of Environmental Chemical Engineering,2021,9(6):106907. doi:10.1016/j.jece.2021.106907
|
8 |
李志勇,裴渊超,王慧勇,等. 环境友好离子液体双水相研究进展[J]. 科学通报,2015,60(26):2457-2465. doi:10.1360/n972015-00345
|
|
LI Zhiyong, PEI Yuanchao, WANG Huiyong,et al. Progress in environmentally friendly ionic liquids aqueous two-phase systems[J]. Chinese Science Bulletin,2015,60(26):2457-2465. doi:10.1360/n972015-00345
|
9 |
LIANG Zhihua, HU Zhiqiang. Biodegradation of nitrophenol compounds and the membrane fouling trends in different submerged membrane bioreactors[J]. Journal of Membrane Science,2012,415/416:93-100. doi:10.1016/j.memsci.2012.04.040
|
10 |
HUANG Lizhi, HANSEN H C B, BJERRUM M J. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes[J]. Journal of Hazardous Materials,2016,306:175-183. doi:10.1016/j.jhazmat.2015.12.009
|
11 |
BELLO M M, ABDUL RAMAN A A, ASGHAR A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment[J]. Process Safety and Environmental Protection,2019,126:119-140. doi:10.1016/j.psep.2019.03.028
|
12 |
WANG Jianlong, CHEN Hai. Catalytic ozonation for water and wastewater treatment:Recent advances and perspective[J]. Science of the Total Environment,2020,704:135249. doi:10.1016/j.scitotenv.2019.135249
|
13 |
DENG Yaocheng, LI Zaiyun, TANG Rongdi,et al. What will happen when microorganisms “meet” photocatalysts and photocatalysis?[J]. Environmental Science:Nano,2020,7(3):702-723. doi:10.1039/c9en01318k
|
14 |
OLIVARES C I, WANG Junqin, SILVA LUNA C D,et al. Continuous treatment of the insensitive munitions compound N-methyl-p-nitro aniline(MNA) in an upflow anaerobic sludge blanket(UASB) bioreactor[J]. Chemosphere,2016,144:1116-1122. doi:10.1016/j.chemosphere.2015.09.092
|
15 |
TOMEI M C, ANNESINI M C, RITA S,et al. Biodegradation of 4-nitrophenol in a two-phase sequencing batch reactor:Concept demonstration,kinetics and modelling[J]. Applied Microbiology and Biotechnology,2008,80(6):1105-1112. doi:10.1007/s00253-008-1604-1
|
16 |
JIANG Xinbai, SHEN Jinyou, HAN Yan,et al. Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket:A comprehensive study[J]. Water Research,2016,88:257-265. doi:10.1016/j.watres.2015.10.023
|
17 |
LI Xiaohu, CHEN Si, ANGELIDAKI I,et al. Bio-electro-Fenton processes for wastewater treatment:Advances and prospects[J]. Chemical Engineering Journal,2018,354:492-506. doi:10.1016/j.cej.2018.08.052
|
18 |
PAULETTO P S, MORENO-PÉREZ J, HERNÁNDEZ-HERNÁNDEZ L E,et al. Novel biochar and hydrochar for the adsorption of 2-nitrophenol from aqueous solutions:An approach using the PVSDM model[J]. Chemosphere,2021,269:128748. doi:10.1016/j.chemosphere.2020.128748
|
19 |
ZHOU Zhifang, ZHAO Baiping, ZHANG Youxian,et al.Efficient removal of copper and lead from aqueous solution by magnetic biochar: Magnetization, adsorption, separation, and desorption[J]. Desalination and Water Treatment,2019,166:24-34. doi:10.5004/dwt.2019.24586
|
20 |
BOMBUWALA DEWAGE N, LIYANAGE A S, SMITH Q,et al. Fast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biochar[J]. Chemosphere,2019,225:943-953. doi:10.1016/j.chemosphere.2019.03.050
|
21 |
RAN Hongtao, LI Penggang, LI Henan,et al. Preparation of iron oxide-loaded bamboo charcoals and their trinitrotoluene red water treatment[J]. Desalination and Water Treatment,2016,57(19):8739-8747. doi:10.1080/19443994.2015.1029527
|
22 |
NIDHEESH P V, GOPINATH A, RANJITH N,et al. Potential role of biochar in advanced oxidation processes:A sustainable approach[J]. Chemical Engineering Journal,2021,405:126582. doi:10.1016/j.cej.2020.126582
|
23 |
YU Yang, AN Qiang, JIN Lin,et al. Unraveling sorption of Cr(Ⅵ) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar:Implicit mechanism and application[J]. Bioresource Technology,2020,297:122466. doi:10.1016/j.biortech.2019.122466
|
24 |
LIU Li, LI Yang, FAN Shisuo. Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution[J]. Processes,2019,7(12):891. doi:10.3390/pr7120891
|
25 |
BHATIA P, NATH M. Green synthesis of p-NiO/n-ZnO nanocomposites:Excellent adsorbent for removal of Congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater[J]. Journal of Water Process Engineering,2020,33:101017. doi:10.1016/j.jwpe.2019.101017
|
26 |
FIKAROVÁ K, HORSTKOTTE B, SKLENÁŘOVÁ H,et al. Automated continuous-flow in-syringe dispersive liquid-liquid microextraction of mono-nitrophenols from large sample volumes using a novel approach to multivariate spectral analysis[J]. Talanta,2019,202:11-20. doi:10.1016/j.talanta.2019.04.044
|
27 |
SHAHRIARI M, AKHAVAN Z, KHAYATI G. Phase diagram study of polymer-salt-based aqueous two-phase systems for extraction of p-nitrophenol[J]. Journal of Chemical & Engineering Data,2020,65(11):5101-5109. doi:10.1021/acs.jced.0c00227
|
28 |
YAHYA A A, RASHID K T, GHADHBAN M Y,et al. Removal of 4-nitrophenol from aqueous solution by using polyphenylsulfone-based blend membranes:Characterization and performance[J]. Membranes,2021,11(3):171. doi:10.3390/membranes11030171
|
29 |
IMASAKA S, ITAKURA M, YANO K,et al. Rapid preparation of high-silica CHA-type zeolite membranes and their separation properties[J]. Separation and Purification Technology,2018,199:298-303. doi:10.1016/j.seppur.2018.01.046
|
30 |
MAURIN G, SERRE C, COOPER A,et al. The new age of MOFs and of their porous-related solids[J]. Chemical Society Reviews,2017,46(11):3104-3107. doi:10.1039/c7cs90049j
|
31 |
WANG Xuerui, ZHAI Linzhi, WANG Yuxiang,et al. Improving water-treatment performance of zirconium metal-organic framework membranes by postsynthetic defect healing[J]. ACS Applied Materials & Interfaces,2017,9(43):37848-37855. doi:10.1021/acsami.7b12750
|
32 |
WU Feichao, WANG Yanling, ZHANG Xiongfu. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Frontiers of Chemical Science and Engineering,2020,14(4):651-660. doi:10.1007/s11705-019-1819-y
|
33 |
RABAAOUI N, SAAD M E K, MOUSSAOUI Y,et al. Anodic oxidation of o-nitrophenol on BDD electrode:Variable effects and mechanisms of degradation[J]. Journal of Hazardous Materials,2013,250/251:447-453. doi:10.1016/j.jhazmat.2013.02.027
|
34 |
RUAN Chi, LIU Changjun, YUE Hairong,et al. Hydrothermally modified graphite felt as an efficient cathode for salty organic wastewater treatment[J]. Environmental Engineering Science,2020,37(12):790-802. doi:10.1089/ees.2020.0064
|
35 |
TORRES R A, TORRES W, PERINGER P,et al. Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes[J]. Chemosphere,2003,50(1):97-104. doi:10.1016/s0045-6535(02)00487-3
|
36 |
BORRÁS C, LAREDO T, MOSTANY J,et al. Study of the oxidation of solutions of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 electrodes by UV-vis and FTIR in situ spectroscopy[J]. Electrochimica Acta,2004,49(4):641-648. doi:10.1016/j.electacta.2003.09.019
|
37 |
TREDICI I, MERLI D, ZAVARISE F,et al. α -cyclodextrins chemically modified gold electrode for the determination of nitroaromatic compounds[J]. Journal of Electroanalytical Chemistry,2010,645(1):22-27. doi:10.1016/j.jelechem.2010.03.036
|
38 |
ANSARI A, NEMATOLLAHI D. Convergent paired electrocatalytic degradation of p-dinitrobenzene by Ti/SnO2-Sb/β-PbO2 anode. A new insight into the electrochemical degradation mechanism[J]. Applied Catalysis B:Environmental,2020,261:118226. doi:10.1016/j.apcatb.2019.118226
|
39 |
MURUGAESAN P, ARAVIND P, GURUSWAMY MUNIYANDI N,et al. Performance of three different anodes in electrochemical degradation of 4-para-nitrophenol[J]. Environmental Technology,2015,36(20):2618-2627. doi:10.1080/09593330.2015.1041424
|
40 |
LIU Qiang, JIANG Shiqi, SU Xintong,et al. Role of the biochar modified with ZnCl2 and FeCl3 on the electrochemical degradation of nitrobenzene[J]. Chemosphere,2021,275:129966. doi:10.1016/j.chemosphere.2021.129966
|
41 |
LIU Yong, ZHAO Yang, WANG Jianlong. Fenton/Fenton-like processes with in situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants:Advances and prospects[J]. Journal of Hazardous Materials,2021,404:124191. doi:10.1016/j.jhazmat.2020.124191
|
42 |
BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews,2009,109(12):6570-6631. doi:10.1021/cr900136g
|
43 |
TANG Zhongmin, ZHAO Peiran, WANG Han,et al. Biomedicine meets Fenton chemistry[J]. Chemical Reviews,2021,121(4):1981-2019. doi:10.1021/acs.chemrev.0c00977
|
44 |
MONTEIL H, PÉCHAUD Y, OTURAN N,et al. A review on efficiency and cost effectiveness of electro- and bio-electro-Fenton processes:Application to the treatment of pharmaceutical pollutants in water[J]. Chemical Engineering Journal,2019,376:119577. doi:10.1016/j.cej.2018.07.179
|
45 |
BELTRÁN F J,REY A. Solar or UVA-visible photocatalytic ozonation of water contaminants[J]. Molecules,2017,22(7):1177. doi:10.3390/molecules22071177
|
46 |
WU Donghai, LU Guanghua, ZHANG Ran,et al. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode[J]. Environmental Science and Pollution Research International,2015,22(20):15812-15820. doi:10.1007/s11356-015-4783-1
|
47 |
FARES AL M, MO’AYYAD S, AHMAD S,et al. Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds[J]. Journal of Environmental Sciences,2008,20(6):675-682. doi:10.3321/j.issn:1001-0742.2008.06.007
|
48 |
GHARBANI P, MEHRIZAD A. Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions[J]. Journal of Saudi Chemical Society,2014,18(5):601-605. doi:10.1016/j.jscs.2012.07.013
|
49 |
NAWAZ F, CAO Hongbin, XIE Yongbing,et al. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol[J]. Chemosphere,2017,168:1457-1466. doi:10.1016/j.chemosphere.2016.11.138
|
50 |
QIAO Jingjuan, LUO Shuai, YANG Peizhen,et al. Degradation of nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,99:1-8. doi:10.1016/j.jtice.2019.02.015
|
51 |
KADAM V V, SHANMUGAM S D, ETTIYAPPAN J P,et al. Photocatalytic degradation of p-nitrophenol using biologically synthesized ZnO nanoparticles[J]. Environmental Science and Pollution Research International,2021,28(10):12119-12130. doi:10.1007/s11356-020-10833-w
|
52 |
YANG Lijun, HU Yandong, SU Mingming,et al. Fabrication of dandelion-like p-p type heterostructure of Ag2O@CoO for bifunctional photoelectrocatalytic performance[J]. Langmuir,2020,36(41):12357-12365. doi:10.1021/acs.langmuir.0c02402
|
53 |
CHEN Ying, SUN Fengqiang, HUANG Zhijian,et al. Photochemical fabrication of SnO2 dense layers on reduced graphene oxide sheets for application in photocatalytic degradation of p-nitrophenol[J]. Applied Catalysis B:Environmental,2017,215:8-17. doi:10.1016/j.apcatb.2017.03.082
|
54 |
MÉNDEZ D, VARGAS R, BORRÁS C,et al. A rotating disk study of the photocatalytic oxidation of p-nitrophenol on phosphorus-modified TiO2 photocatalyst[J]. Applied Catalysis B:Environmental,2015,166/167:529-534. doi:10.1016/j.apcatb.2014.11.037
|
55 |
WEI Tuo, WAQAS M, XIAO Ke,et al. Effective degradation of refractory nitrobenzene in water by the natural 4-hydroxycoumarin under solar illumination[J]. Chemosphere,2019,215:199-205. doi:10.1016/j.chemosphere.2018.10.034
|
56 |
YU Xinmin, ZHANG Xinyan, ZHAO Jie,et al. Flower-like shaped Bi12TiO20/g-C3N4 heterojunction for effective elimination of organic pollutants:Preparation,characterization,and mechanism study[J]. Applied Organometallic Chemistry,2020,34(8):e5702. doi:10.1002/aoc.5702
|
57 |
HUANG Jingwen, JIN Bo, LIU Huiqiang,et al. Controllable synthesis of flower-like MoSe2 3D microspheres for highly efficient visible-light photocatalytic degradation of nitroaromatic explosives[J]. Journal of Materials Chemistry A,2018,6(24):11424-11434. doi:10.1039/c8ta02287a
|
58 |
LIU Ke, CHENG Pan, KONG Chuncai,et al. A readily accessible functional nanofibrous membrane for high-capacity immobilization of Ag nanoparticles and ultrafast catalysis application[J]. Advanced Materials Interfaces,2019,6(5):1801617. doi:10.1002/admi.201801617
|
59 |
BAI Xiaojue, CHEN Dan, LI Yunong,et al. Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol[J]. Journal of Membrane Science,2019,582:30-36. doi:10.1016/j.memsci.2019.03.055
|
60 |
BHARGAVA S K, TARDIO J, PRASAD J,et al. Wet oxidation and catalytic wet oxidation[J]. Industrial & Engineering Chemistry Research,2006,45(4):1221-1258. doi:10.1021/ie051059n
|
61 |
FU Dongmei, ZHANG Feifang, WANG Lianzhi,et al. Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation[J]. Chinese Journal of Catalysis,2015,36(7):952-956. doi:10.1016/s1872-2067(15)60835-x
|
62 |
WANG Penghua, LIANG Y N, ZHONG Ziyi,et al. Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation(AC-CWAO) of organic dyes[J]. Separation and Purification Technology,2020,233:115960. doi:10.1016/j.seppur.2019.115960
|
63 |
PARVAS M, HAGHIGHI M, ALLAHYARI S. Catalytic wet air oxidation of phenol over ultrasound-assisted synthesized Ni/CeO2-ZrO2 nanocatalyst used in wastewater treatment[J]. Arabian Journal of Chemistry,2019,12(7):1298-1307. doi:10.1016/j.arabjc.2014.10.043
|
64 |
XU Yin, LI Xiaoyi, CHENG Xiang,et al. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure[J]. Environmental Science & Technology,2012,46(5):2856-2863. doi:10.1021/es203531q
|
65 |
MORALES-TORRES S, SILVA A M T, PÉREZ-CADENAS A F,et al. Wet air oxidation of trinitrophenol with activated carbon catalysts:Effect of textural properties on the mechanism of degradation[J]. Applied Catalysis B:Environmental,2010,100(1/2):310-317. doi:10.1016/j.apcatb.2010.08.007
|
66 |
MAKSIMOVA Y G, MAKSIMOV A Y, DEMAKOV V A,et al. Biotechnological approaches to bioremediation of trinitrotoluene-contaminated environment[J]. Biotekhnologiya,2018,34(1):9-23. doi:10.21519/0234-2758-2018-34-1-9-23
|
67 |
HUANG Jingang, LI Jiahao, HAN Wei,et al. Effect of shocked nitrobenzene concentrations on the operational performance of anaerobic sequential batch reactor[J]. Environmental Progress & Sustainable Energy,2018,37(2):712-718. doi:10.1002/ep.12744
|
68 |
MEENA M, YADAV G, SONIGRA P,et al. A comprehensive review on application of bioreactor for industrial wastewater treatment[J]. Letters in Applied Microbiology,2022,74(2):131-158. doi:10.1111/lam.13557
|
69 |
CHEN Maolian, YU Ningning, CHEN Yaping,et al. Anaerobic semi-fixed bed biofilm reactor(An-SFB-BR) for treatment of high concentration p-nitrophenol wastewater under shock loading conditions[J]. Biodegradation,2021,32(4):377-388.
|
70 |
FATONE F, DI FABIO S, BOLZONELLA D,et al. Fate of aromatic hydrocarbons in Italian municipal wastewater systems:An overview of wastewater treatment using conventional activated-sludge processes(CASP) and membrane bioreactors(MBRs)[J]. Water Research,2011,45(1):93-104. doi:10.1016/j.watres.2010.08.011
|
71 |
LIM J W, GAN H M, SENG C E. Bioremediation of wastewaters containing various phenolic compounds by phenol-acclimated activated sludge[J]. Desalination and Water Treatment,2013,51(37/38/39):7018-7024. doi:10.1080/19443994.2013.792516
|
72 |
LAMBA J, ANAND S, DUTTA J,et al. Study on aerobic degradation of 2,4,6-trinitrotoluene(TNT) using pseudarthrobacter chlorophenolicus collected from the contaminated site[J]. Environmental Monitoring and Assessment,2021,193(2):80. doi:10.1007/s10661-021-08869-7
|
73 |
SAM S P, TAN H T, SUDESH K,et al. Phenol and p-nitrophenol biodegradations by acclimated activated sludge:Influence of operational conditions on biodegradation kinetics and responding microbial communities[J]. Journal of Environmental Chemical Engineering,2021,9(4):105420. doi:10.1016/j.jece.2021.105420
|
74 |
吕鹏翼,罗金学,韩振飞,等. 生物膜技术在污染河流原位修复中的应用及研究进展[J]. 水处理技术,2017,43(11):1-7.
|
|
Pengyi LÜ, LUO Jinxue, HAN Zhenfei,et al. Application and research progress of biofilm technology in polluted river in situ bioremediation[J]. Technology of Water Treatment,2017,43(11):1-7.
|
75 |
MEI Xiang, WANG Yihan, YANG Yang,et al. Enhanced treatment of nitroaniline-containing wastewater by a membrane-aerated biofilm reactor:Simultaneous nitroaniline degradation and nitrogen removal[J]. Separation and Purification Technology,2020,248:117078. doi:10.1016/j.seppur.2020.117078
|
76 |
MAFA P J, MAMBA B B, KUVAREGA A T. Photoelectrocatalytic evaluation of EG-CeO2 photoanode on degradation of 2,4-dichlorophenol[J]. Solar Energy Materials and Solar Cells,2020,208:110416. doi:10.1016/j.solmat.2020.110416
|
77 |
WEI Rui, WANG Peng, ZHANG Guangshan,et al. Microwave-responsive catalysts for wastewater treatment:A review[J]. Chemical Engineering Journal,2020,382:122781. doi:10.1016/j.cej.2019.122781
|
78 |
MAHDIZADEH H, DADBAN SHAHAMAT Y, RODRÍGUEZ-COUTO S. Discoloration and mineralization of a textile azo dye using a hybrid UV/O3/SBR process[J]. Applied Water Science,2021,11(10):1-9. doi:10.1007/s13201-021-01479-1
|
79 |
ZHAO Chun, SI Bin, MIRZA Z A,et al. Activated carbon fiber(ACF) enhances the UV/EF system to remove nitrobenzene in water[J]. Separation and Purification Technology,2017,187:397-406. doi:10.1016/j.seppur.2017.05.030
|
80 |
任玉莹,刘玉香. 微生物燃料电池中阳极材料的研究进展[J]. 工业水处理,2020,40(3):17-22. doi:10.11894/iwt.2019-0220
|
|
REN Yuying, LIU Yuxiang. Research progress on anode materials in microbial fuel cells[J]. Industrial Water Treatment,2020,40(3):17-22. doi:10.11894/iwt.2019-0220
|
81 |
LI Biao, SUN Jiadong, TANG Chen,et al. A novel core-shell Fe@Co nanoparticles uniformly modified graphite felt cathode(Fe@Co/GF) for efficient bio-electro-Fenton degradation of phenolic compounds[J]. Science of the Total Environment,2021,760:143415. doi:10.1016/j.scitotenv.2020.143415
|