1 |
CLARIZIA L, RUSSO D, SOMMA I D,et al. Homogeneous photo-Fenton processes at near neutral pH:A review[J]. Applied Catalysis B:Environmental,2017,209:358-371. doi:10.1016/j.apcatb.2017.03.011
|
2 |
朱紫燕,王孝文,王允东,等. Fenton反应中加速FeⅢ还原为FeⅡ的研究进展及展望[J]. 工业水处理,2022,42(2):1-10.
|
|
ZHU Ziyan, WANG Xiaowen, WANG Yundong,et al. Research progress and prospect of accelerating reduction of Fe Ⅲ to Fe Ⅱ in Fenton reaction[J]. Industrial Water Treatment,2022,42(2):1-10.
|
3 |
CHEN Cuibai, FENG Huan, DENG Yang. Re-evaluation of sulfate radical based-advanced oxidation processes(SR-AOPs) for treatment of raw municipal landfill leachate[J]. Water Research,2019,153:100-107. doi:10.1016/j.watres.2019.01.013
|
4 |
DARIVA C G, COELHO J F J, SERRA A C. Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems[J]. Journal of Controlled Release,2019,294:337-354. doi:10.1016/j.jconrel.2018.12.042
|
5 |
GHOGARE A A, GREER A. Using singlet oxygen to synthesize natural products and drugs[J]. Chemical Reviews,2016,116(17):9994-10034. doi:10.1021/acs.chemrev.5b00726
|
6 |
KALAY E, KILIÇ H, CATIR M,et al. Generation of singlet oxygen(1O2) from hydrogen peroxide decomposition by in situ generated hypervalent iodoarene reagents[J]. Pure and Applied Chemistry,2014,86(6):945-952. doi:10.1515/pac-2013-0812
|
7 |
KAUTSKY H. Quenching of luminescence by oxygen[J]. Transactions of the Faraday Society,1939,35:216-219. doi:10.1039/tf9393500216
|
8 |
PIBIRI I, BUSCEMI S, PALUMBO PICCIONELLO A,et al. Photochemically produced singlet oxygen:Applications and perspectives[J]. ChemPhotoChem,2018,2(7):535-547. doi:10.1002/cptc.201800076
|
9 |
DAIMON T, NOSAKA Y. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence[J]. The Journal of Physical Chemistry C,2007,111(11):4420-4424. doi:10.1021/jp070028y
|
10 |
DOLGOPOLOVA E A, RICE A M, MARTIN C R,et al. Photochemistry and photophysics of MOFs:Steps towards MOF-based sensing enhancements[J]. Chemical Society Reviews,2018,47(13):4710-4728. doi:10.1039/c7cs00861a
|
11 |
HUANG Wenguang, WANG Xinzhu, ZHANG Wentao,et al. Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks[J]. Applied Catalysis B:Environmental,2020,273:119087. doi:10.1016/j.apcatb.2020.119087
|
12 |
CHEN Y H, WANG Bokai, HOU Wenche. Graphitic carbon nitride embedded with graphene materials towards photocatalysis of bisphenol A:The role of graphene and mediation of superoxide and singlet oxygen[J]. Chemosphere,2021,278:130334. doi:10.1016/j.chemosphere.2021.130334
|
13 |
BUCHALSKA M, LABUZ P, BUJAK Ł,et al. New insight into singlet oxygen generation at surface modified nanocrystalline TiO2:The effect of near-infrared irradiation[J]. Dalton Transactions(Cambridge,England: 2003),2013,42(26):9468-9475.
|
14 |
ZHANG Wentao, HUANG Wenguang, JIN Jiyuan,et al. Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125[J]. Applied Catalysis B:Environmental,2021,292:120197. doi:10.1016/j.apcatb.2021.120197
|
15 |
BAGROV I V, KISELEV V M, KISLYAKOV I M,et al. Direct optical excitation of singlet oxygen in organic solvents[J]. Optics and Spectroscopy,2014,116(4):567-574. doi:10.1134/s0030400x14040043
|
16 |
DETTY M R. Direct 1 270 nm irradiation as an alternative to photosensitized generation of singlet oxygen to induce cell death[J]. Photochemistry and Photobiology,2012,88(1):2-4. doi:10.1111/j.1751-1097.2011.01047.x
|
17 |
KRASNOVSKY JR A A, ROUMBAL Y V, IVANOV A V,et al. Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by CW 1 267 nm laser radiation in air-saturated solutions:Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength[J]. Chemical physics letters,2006,430(4/5/6):260-264. doi:10.1016/j.cplett.2006.08.083
|
18 |
YI Qiuying, JI Jiahui, SHEN Bin,et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment[J]. Environmental Science & Technology,2019,53(16):9725-9733. doi:10.1021/acs.est.9b01676
|
19 |
ZHAO Yumeng, SUN Meng, WANG Xiaoxiong,et al. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production[J]. Nature Communications,2020,11:6228. doi:10.1038/s41467-020-20071-w
|
20 |
CHEN Cheng, LIU Li, LI Yuxin,et al. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate[J]. Chemical Engineering Journal,2020,384:123257. doi:10.1016/j.cej.2019.123257
|
21 |
CHENG Xin, GUO Hongguang, ZHANG Yongli,et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research,2017,113:80-88. doi:10.1016/j.watres.2017.02.016
|
22 |
ZHU Shishu, LI Xiaojie, KANG Jian,et al. Persulfate activation on crystallographic manganese oxides:Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science & Technology,2019,53(1):307-315. doi:10.1021/acs.est.8b04669
|
23 |
BOKARE A D, CHOI W. Singlet-oxygen generation in alkaline periodate solution[J]. Environmental Science & Technology,2015,49(24):14392-14400. doi:10.1021/acs.est.5b04119
|
24 |
JI Jiahui, YAN Qingyun, YIN Pengcheng,et al. Defects on CoS2- x :Tuning redox reactions for sustainable degradation of organic pollutants[J]. Angewandte Chemie,2021,133(6):2939-2944. doi:10.1002/ange.202013015
|
25 |
RAYAROTH M P, PRASANTHKUMAR K P, KANG Y G,et al. Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron-citric acid system[J]. Chemical Engineering Journal,2020,382:122828. doi:10.1016/j.cej.2019.122828
|
26 |
LI Yangju, LI Jun, PAN Yuting,et al. Peroxymonosulfate activation on FeCo2S4 modified g-C3N4(FeCo2S4-CN):Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole[J]. Chemical Engineering Journal,2020,384:123361. doi:10.1016/j.cej.2019.123361
|
27 |
ZHU Ke, Qiong BIN, SHEN Yaqian,et al. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate(PS) toward degradation of organic pollutants[J]. Chemical Engineering Journal,2020,402:126090. doi:10.1016/j.cej.2020.126090
|
28 |
PU Mengjie, WAN Jinquan, ZHANG Fengzhen,et al. Insight into degradation mechanism of sulfamethoxazole by metal-organic framework derived novel magnetic Fe@C composite activated persulfate[J]. Journal of Hazardous Materials,2021,414:125598. doi:10.1016/j.jhazmat.2021.125598
|
29 |
YANG Peizeng, JI Yuefei, LU Junhe. Transformation of ammonium to nitrophenolic byproducts by sulfate radical oxidation[J]. Water Research,2021,202:117432. doi:10.1016/j.watres.2021.117432
|
30 |
ZHANG Longshuai, JIANG Xunheng, ZHONG Ziai,et al. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angewandte Chemie International Edition,2021,60(40):21751-21755. doi:10.1002/anie.202109488
|
31 |
DOU Xiangnan, ZHANG Qiang, SHAH S N A,et al. MoS2-quantum dot triggered reactive oxygen species generation and depletion:Responsible for enhanced chemiluminescence[J]. Chemical Science,2019,10(2):497-500. doi:10.1039/c8sc03511c
|
32 |
SALGADO P, MELIN V, CONTRERAS D,et al. Fenton reaction driven by iron ligands[J]. Journal of the Chilean Chemical Society,2013,58(4):2096-2101. doi:10.4067/s0717-97072013000400043
|
33 |
LIU Yang, GUO Hongguang, ZHANG Yongli,et al. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40:Singlet oxygen generation and degradation for aquatic levofloxacin[J]. Chemical Engineering Journal,2018,343:128-137. doi:10.1016/j.cej.2018.02.125
|
34 |
DONG Xiongbo, DUAN Xiaodi, SUN Zhiming,et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B:Environmental,2020,261:118214. doi:10.1016/j.apcatb.2019.118214
|
35 |
YU Jie, ZENG Tao, WANG He,et al. Oxygen-defective MnO2- x rattle-type microspheres mediated singlet oxygen oxidation of organics by peroxymonosulfate activation[J]. Chemical Engineering Journal,2020,394:124458. doi:10.1016/j.cej.2020.124458
|
36 |
MI Xueyue, WANG Pengfei, XU Shizhe,et al. Almost 100% peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites[J]. Angewandte Chemie International Edition,2021,60(9):4588-4593. doi:10.1002/anie.202014472
|
37 |
罗相萍,游少鸿,刘崇敏,等. LDHs及其复合材料处理重金属废水的研究进展[J]. 工业水处理,2022,42(2):51-59.
|
|
LUO Xiangping, YOU Shaohong, LIU Chongmin,et al. Research progress on treatment of heavy metal wastewater by layered double hydroxides and their composites[J]. Industrial Water Treatment,2022,42(2):51-59.
|
38 |
CAO Jiao, SUN Saiwu, LI Xin,et al. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation[J]. Chemical Engineering Journal,2020,382:122802. doi:10.1016/j.cej.2019.122802
|
39 |
ZENG Hanxuan, DENG Lin, ZHANG Haojie,et al. Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation:A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation[J]. Journal of Hazardous Materials,2020,400:123297. doi:10.1016/j.jhazmat.2020.123297
|
40 |
包信和. 纳米限域体系的催化特性[J]. 中国科学(B辑:化学),2009,39(10):1125-1133.
|
|
BAO Xinhe. Catalytic characters of the nano-confined systems[J]. Science in China(Series B:Chemistry),2009,39(10):1125-1133.
|
41 |
YANG Zhichao, QIAN Jieshu, YU Anqing,et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. PNAS,2019,116(14):6659-6664. doi:10.1073/pnas.1819382116
|
42 |
CAO Jiao, YANG Zhaohui, XIONG Weiping,et al. Peroxymonosulfate activation of magnetic Co nanoparticles relative to an N-doped porous carbon under confinement:Boosting stability and performance[J]. Separation and Purification Technology,2020,250:117237. doi:10.1016/j.seppur.2020.117237
|
43 |
ZENG Hanxuan, DENG Lin, ZHANG Haojie,et al. Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation:A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation[J]. Journal of Hazardous Materials,2020,400:123297. doi:10.1016/j.jhazmat.2020.123297
|