1 |
|
|
QIN Bin, GU Jinchuan, YIN Ping,et al. Research progresses on dye wastewater treatment technology[J]. Environmental Protection of Chemical Industry, 2021, 41(1):9-18. doi: 10.3969/j.issn.1006-1878.2021.01.002
|
2 |
GÜRSES A, AÇIKYILDIZ M, GÜNEŞ K,et al. Classification of dye and pigments[M]// Dyes and Pigments. Cham:Springer, 2016:31-45. doi: 10.1007/978-3-319-33892-7_3
|
3 |
SHANKARLING G S, DESHMUKH P P, JOGLEKAR A R. Process intensification in azo dyes[J]. Journal of Environmental Chemical Engineering, 2017, 5(4):3302-3308. doi: 10.1016/j.jece.2017.05.057
|
4 |
|
|
Honghong LÜ, GONG Yanyan, TANG Jingchun,et al. Advances in preparation and applications of biochar and its composites[J]. Journal of Agro-Environment Science, 2015, 34(8):1429-1440. doi: 10.11654/jaes.2015.08.001
|
5 |
陈琳,杨苏东,王传义,等. 二氧化钛光催化材料及其改性技术研究进展[J]. 离子交换与吸附,2013,29(1):86-96.
|
|
CHEN Lin, YANG Sudong, WANG Chuanyi,et al. Advances in preparation and modification of photocatalytic materials made from titanium dioxide[J]. Ion Exchange and Adsorption,2013,29(1):86-96.
|
6 |
COLMENARES J C, VARMA R S, LISOWSKI P. Sustainable hybrid photocatalysts:Titania immobilized on carbon materials derived from renewable and biodegradable resources[J]. Green Chemistry:An International Journal and Green Chemistry Resource:GC, 2016, 18(21):10.1039/c6gc02477g. doi: 10.1039/c6gc02477g
|
7 |
万文亚. 二氧化钛/生物炭复合材料的研究进展[J]. 上海化工,2020,45(1):41-43.
|
|
WAN Wenya. Advance in titanium dioxide/biochar composites[J]. Shanghai Chemical Industry,2020,45(1):41-43.
|
8 |
BENKHAYA S, M’RABET S, HARFI A EL. Classifications,properties,recent synthesis and applications of azo dyes[J]. Heliyon, 2020, 6(1):e03271. doi: 10.1016/j.heliyon.2020.e03271
|
9 |
黄春梅. 偶氮染料的生物脱色及中间产物苯胺类的生物降解特性研究[D]. 广州:华南理工大学,2012.
|
10 |
RAUF M A, ASHRAF S S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution[J]. Chemical Engineering Journal, 2009, 151(1/2/3):10-18. doi: 10.1016/j.cej.2009.02.026
|
11 |
KHATAEE A R, PONS M N, ZAHRAA O. Photocatalytic degradation of three azo dyes using immobilized TiO 2 nanoparticles on glass plates activated by UV light irradiation:Influence of dye molecular structure[J]. Journal of Hazardous Materials, 2009, 168(1):451-457. doi: 10.1016/j.jhazmat.2009.02.052
|
12 |
NATARAJAN S, BAJAJ H C, TAYADE R J. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process[J]. Journal of Environmental Sciences, 2018, 65:201-222. doi: 10.1016/j.jes.2017.03.011
|
13 |
董振,刘亮,郝艳,等. 偶氮染料废水处理技术的研究进展[J]. 水处理技术,2017,43(4):6-10.
|
|
DONG Zhen, LIU Liang, HAO Yan,et al. Research progress on the treatment of azo dye containing wastewater[J]. Technology of Water Treatment,2017,43(4):6-10.
|
14 |
PAVITHRA K G, KUMAR P S, Jaikumar V,et al. Removal of colorants from wastewater:A review on sources and treatment strategies[J]. Journal of Industrial and Engineering Chemistry, 2019, 75:1-19. doi: 10.1016/j.jiec.2019.02.011
|
15 |
张华春,熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色,2016,53(3):45-51.
|
|
ZHANG Huachun, XIONG Guochen. Review on the treatment methods of azo dyes wastewater[J]. Dyestuffs and Coloration,2016,53(3):45-51.
|
16 |
|
|
|
17 |
AYATI A, SHAHRAK M N, TANHAEI B,et al. Emerging adsorptive removal of azo dye by metal-organic frameworks[J]. Chemosphere, 2016, 160:30-44. doi: 10.1016/j.chemosphere.2016.06.065
|
18 |
RAVAL N P, SHAH P U, SHAH N K. Adsorptive amputation of hazardous azo dye Congo red from wastewater:A critical review[J]. Environmental Science and Pollution Research, 2016, 23(15):14810-14853. doi: 10.1007/s11356-016-6970-0
|
19 |
李北罡,冯燕霞. 磁性CS-Y负载FA复合材料对偶氮染料的超高效吸附[J]. 稀土,2022,43(1):39-48.
|
|
LI Beigang, FENG Yanxia. Super efficient adsorption of polyazo dyes on magnetic CS-Y-loaded FA composite[J]. Chinese Rare Earths,2022,43(1):39-48.
|
20 |
水博阳,宋小三,范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展,2021,40(S2):356-363.
|
|
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress,2021,40(S2):356-363.
|
21 |
ZHANG Shici, LU Xujie. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO 2/BC composite as heterogeneous photocatalyst and adsorbent[J]. Chemosphere, 2018, 206:777-783. doi: 10.1016/j.chemosphere.2018.05.073
|
22 |
FAZAL T, RAZZAQ A, JAVED F,et al. Integrating adsorption and photocatalysis:A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO 2 composite[J]. Journal of Hazardous Materials, 2020, 390:121623. doi: 10.1016/j.jhazmat.2019.121623
|
23 |
IPPOLITO J A, CUI Liqiang, KAMMANN C,et al. Feedstock choice,pyrolysis temperature and type influence biochar characteristics:A comprehensive meta-data analysis review[J]. Biochar, 2020, 2(4):421-438. doi: 10.1007/s42773-020-00067-x
|
24 |
LENG Lijian, HUANG Huajun. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018, 270:627-642. doi: 10.1016/j.biortech.2018.09.030
|
25 |
CHEN Yingquan, YANG Haiping, WANG Xianhua,et al. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis:Influence of temperature[J]. Bioresource Technology, 2012, 107:411-418. doi: 10.1016/j.biortech.2011.10.074
|
26 |
|
|
ZHANG Weiming, XIU Liqun, WU Di,et al. Review of biochar structure and physicochemical properties[J]. Acta Agronomica Sinica, 2021, 47(1):1-18. doi: 10.3724/sp.j.1006.2021.02021
|
27 |
|
|
ZHOU Yu, CHEN Xiaojuan, LU Kaihong,et al. Preparation,functional modification of biochar and its removal performance for organic pollutants in wastewater:A brief review[J]. Journal of Synthetic Crystals, 2021, 50(12):2389-2400. doi: 10.3969/j.issn.1000-985X.2021.12.024
|
28 |
LUO Zirui, YAO Bin, YANG Xiao,et al. Novel insights into the adsorption of organic contaminants by biochar:A review[J]. Chemosphere, 2022, 287:132113. doi: 10.1016/j.chemosphere.2021.132113
|
29 |
NGUYEN X C, NGUYEN T T H, NGUYEN T H C,et al. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water[J]. Chemosphere, 2021, 282:131009. doi: 10.1016/j.chemosphere.2021.131009
|
30 |
|
|
REN Xiaoli, KANG Jie, ZHU Kaijin,et al. Studies on the adsorption characteristics of azo dyes on sludge biochar[J]. Applied Chemical Industry, 2018, 47(1):113-116. doi: 10.3969/j.issn.1671-3206.2018.01.028
|
31 |
INYANG M, DICKENSON E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water:A review[J]. Chemosphere, 2015, 134:232-240. doi: 10.1016/j.chemosphere.2015.03.072
|
32 |
ZHANG Zheng, WANG Guanghua, LI Wenbing,et al. Degradation of methyl orange through hydroxyl radical generated by optically excited biochar:Performance and mechanism[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 601:125034. doi: 10.1016/j.colsurfa.2020.125034
|
33 |
刘颖. 光活性生物炭协同UV去除偶氮染料污染研究以及机理解析[D]. 雅安:四川农业大学,2018.
|
34 |
LACHHEB H, PUZENAT E, HOUAS A,et al. Photocatalytic degradation of various types of dyes(Alizarin S,Crocein Orange G,Methyl Red,Congo Red,Methylene Blue) in water by UV-irradiated titania[J]. Applied Catalysis B:Environmental, 2002, 39(1):75-90. doi: 10.1016/s0926-3373(02)00078-4
|
35 |
KORDOULI E, BOURIKAS K, LYCOURGHIOTIS A,et al. The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios[J]. Catalysis Today, 2015, 252:128-135. doi: 10.1016/j.cattod.2014.09.010
|
36 |
MA Liqin, XU Wence, ZHU Shengli,et al. Anatase TiO 2 hierarchical nanospheres with enhanced photocatalytic activity for degrading methyl orange[J]. Materials Chemistry and Physics, 2016, 170:186-192. doi: 10.1016/j.matchemphys.2015.12.038
|
37 |
KŐRÖSI L, BOGNÁR B, BOUDERIAS S,et al. Highly-efficient photocatalytic generation of superoxide radicals by phase-pure rutile TiO 2 nanoparticles for azo dye removal[J]. Applied Surface Science, 2019, 493:719-728. doi: 10.1016/j.apsusc.2019.06.259
|
38 |
PEREIRA LOPES R, ASTRUC D. Biochar as a support for nanocatalysts and other reagents:Recent advances and applications[J]. Coordination Chemistry Reviews, 2021, 426:213585. doi: 10.1016/j.ccr.2020.213585
|
39 |
ZHANG Hanyu, WANG Zhaowei, LI Ruining,et al. TiO 2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices[J]. Chemosphere, 2017, 185:351-360. doi: 10.1016/j.chemosphere.2017.07.025
|
40 |
LISOWSKI P, COLMENARES J C, MAŠEK O,et al. Dual functionality of TiO 2/biochar hybrid materials:Photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7):6274-6287. doi: 10.1021/acssuschemeng.7b01251
|
41 |
WANG Bin, LIU Bo, JI Xingxiang,et al. Synthesis,characterization,and photocatalytic properties of bamboo charcoal/TiO 2 composites using four sizes powder[J]. Materials, 2018, 11(5):670. doi: 10.3390/ma11050670
|
42 |
MIAN M M, LIU Guijian, YOUSAF B,et al. One-step synthesis of N-doped metal/biochar composite using NH 3-ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue[J]. Journal of Environmental Sciences, 2019, 78:29-41. doi: 10.1016/j.jes.2018.06.014
|
43 |
XUE Hun, CHEN Yilan, LIU Xinping,et al. Visible light-assisted efficient degradation of dye pollutants with biomass-supported TiO 2 hybrids[J]. Materials Science and Engineering:C, 2018, 82:197-203. doi: 10.1016/j.msec.2017.08.060
|
44 |
SILVESTRI S, GONÇALVES M G, SILVA VEIGA P A DA,et al. TiO 2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye[J]. Journal of Environmental Chemical Engineering, 2019, 7(1):102879. doi: 10.1016/j.jece.2019.102879
|
45 |
陆丽丽,单锐,何明阳,等. 新型TiO2/生物炭复合催化剂光催化降解甲基橙[J]. 太阳能学报,2021,42(4):32-39.
|
|
LU Lili, SHAN Rui, HE Mingyang,et al. Novel titanium dioxide/biochar composite catalyst for photocatalytic degradation of methyl orange[J]. Acta Energiae Solaris Sinica,2021,42(4):32-39.
|
46 |
SHAN Rui, LU Lili, GU Jing,et al. Photocatalytic degradation of methyl orange by Ag/TiO 2/biochar composite catalysts in aqueous solutions[J]. Materials Science in Semiconductor Processing, 2020, 114:105088. doi: 10.1016/j.mssp.2020.105088
|
47 |
SONG Chuanfu, CHEN Kunyuan, CHEN Mingxin,et al. Sequential combined adsorption and solid-phase photocatalysis to remove aqueous organic pollutants by H 3PO 4-modified TiO 2 nanoparticles anchored on biochar[J]. Journal of Water Process Engineering, 2022, 45:102467. doi: 10.1016/j.jwpe.2021.102467
|
48 |
KUAN Junling, ZHANG Hui, GU Haoshuai,et al. Adsorption-enhanced photocatalytic property of Ag-doped biochar/g-C 3N 4/TiO 2 composite by incorporating cotton-based biochar[J]. Nanotechnology, 2022, 33(34):345402. doi: 10.1088/1361-6528/ac705e
|
49 |
SHAN Rui, LU Lili, GU Jing,et al. Photocatalytic degradation of methyl orange by Ag/TiO 2/biochar composite catalysts in aqueous solutions[J]. Materials Science in Semiconductor Processing, 2020, 114:105088. doi: 10.1016/j.mssp.2020.105088
|
50 |
何迎东. 生物炭对污水典型污染物的去除机理与应用研究进展[J]. 农业与技术,2020,40(9):109-114.
|
|
HE Yingdong. Research progress on removal mechanism and application of typical pollutants in sewage by biochar[J]. Agriculture and Technology,2020,40(9):109-114.
|
51 |
YU Peng, HU Tao, CHEN Hong hui,et al. Effective removal of Congo red by triarrhena biochar loading with TiO 2 nanoparticles[J]. Scanning, 2018, 2018:1-7. doi: 10.1155/2018/7670929
|
52 |
PANG Y L, LAW Z X,LIM S,et al. Enhanced photocatalytic degradation of methyl orange by coconut shell-derived biochar composites under visible LED light irradiation[J]. Environmental Science and Pollution Research, 2021, 28(21):27457-27473. doi: 10.1007/s11356-020-12251-4
|
53 |
SAEED M, MUNEER M, HAQ A U,et al. Photocatalysis:An effective tool for photodegradation of dyes:A review[J]. Environmental Science and Pollution Research, 2022, 29(1):293-311. doi: 10.1007/s11356-021-16389-7
|
54 |
ISAC L, CAZAN C, ENESCA A,et al. Copper sulfide based heterojunctions as photocatalysts for dyes photodegradation[J]. Frontiers in Chemistry, 2019, 7:694. doi: 10.3389/fchem.2019.00694
|
55 |
PINGMUANG K, CHEN Jun, KANGWANSUPAMONKON W,et al. Composite photocatalysts containing BiVO 4 for degradation of cationic dyes[J]. Scientific Reports, 2017, 7:8929. doi: 10.1038/s41598-017-09514-5
|
56 |
MACHADO A E H, DE MIRANDA J A, DE FREITAS R F,et al. Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 155(1/2/3):231-241. doi: 10.1016/s1010-6030(02)00393-3
|
57 |
YUE Bin, ZHOU Yan, XU Jingyu,et al. Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates[J]. Environmental Science & Technology, 2002, 36(6):1325-1329. doi: 10.1021/es011038u
|
58 |
AL-MAMUN M R, KADER S, ISLAM M S,et al. Photocatalytic activity improvement and application of UV-TiO 2 photocatalysis in textile wastewater treatment:A review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5):103248. doi: 10.1016/j.jece.2019.103248
|
59 |
LU Lili, SHAN Rui, SHI Yueyue,et al. A novel TiO 2/biochar composite catalysts for photocatalytic degradation of methyl orange[J]. Chemosphere, 2019, 222:391-398. doi: 10.1016/j.chemosphere.2019.01.132
|
60 |
BERKANI M, KADMI Y, BOUCHAREB M K,et al. Combinatıon of a Box-Behnken design technique with response surface methodology for optimization of the photocatalytic mineralization of C. I.Basic Red 46 dye from aqueous solution[J]. Arabian Journal of Chemistry, 2020, 13(11):8338-8346. doi: 10.1016/j.arabjc.2020.05.013
|
61 |
HABIBI M H, HASSANZADEH A, ZEINI-ISFAHANI A. Effect of dye aggregation and azo-hydrazone tautomerism on the photocatalytic degradation of Solophenyl red 3BL azo dye using aqueous TiO 2 suspension[J]. Dyes and Pigments, 2006, 69(3):111-117. doi: 10.1016/j.dyepig.2005.02.016
|
62 |
MAZZANTI M, CARAMORI S, FOGAGNOLO M,et al. Turning waste into useful products by photocatalysis with nanocrystalline TiO 2 thin films:Reductive cleavage of azo bond in the presence of aqueous formate[J]. Nanomaterials, 2020, 10(11):2147. doi: 10.3390/nano10112147
|
63 |
WAWRZYNIAK B, MORAWSKI A W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO 2 photocatalyst containing nitrogen[J]. Applied Catalysis B:Environmental, 2006, 62(1/2):150-158. doi: 10.1016/j.apcatb.2005.07.008
|
64 |
WANG Yifeng, ZHAO Dan, MA Wanhong,et al. Enhanced sonocatalytic degradation of azo dyes by Au/TiO 2 [J]. Environmental Science & Technology, 2008, 42(16):6173-6178. doi: 10.1021/es800168k
|
65 |
ZHOU Kefu, HU Xinyan, CHEN B Y,et al. Synthesized TiO 2/ZSM-5 composites used for the photocatalytic degradation of azo dye:Intermediates,reaction pathway,mechanism and bio-toxicity[J]. Applied Surface Science, 2016, 383:300-309. doi: 10.1016/j.apsusc.2016.04.155
|
66 |
NAIK G D L, KOTTAM N, SHIVASHANKAR G K. Photo catalytic degradation of azo dyes over Mn 2+ doped TiO 2 catalyst under UV/solar light:An insight to the route of electron transfer in the mixed phase of anatase and rutile[J]. Chinese Journal of Chemistry, 2010, 28(11):2151-2161. doi: 10.1002/cjoc.201090356
|
67 |
ANKU W, OSEI-BONSU OPPONG S, KUMAR SHUKLA S,et al. Comparative photocatalytic degradation of monoazo and diazo dyes under simulated visible light using Fe 3+/C/S doped-TiO 2 nanoparticles[J]. Acta Chimica Slovenica, 2016:380-391. doi: 10.17344/acsi.2016.2385
|
68 |
KONSTANTINOU I K, ALBANIS T A. TiO 2-assisted photocatalytic degradation of azo dyes in aqueous solution:Kinetic and mechanistic investigations[J]. Applied Catalysis B:Environmental, 2004, 49(1):1-14. doi: 10.1016/j.apcatb.2003.11.010
|
69 |
MOHAMED H H, ALOMAIR N A. Exploiting stored TiO 2 electrons for multi-electron reduction of an azo dye methyl orange in aqueous suspension[J]. Journal of Saudi Chemical Society, 2018, 22(3):322-328. doi: 10.1016/j.jscs.2016.06.002
|
70 |
ERDEMOĞLU S, AKSU S K, SAYıLKAN F,et al. Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO 2 and identification of degradation products by LC-MS[J]. Journal of Hazardous Materials, 2008, 155(3):469-476. doi: 10.1016/j.jhazmat.2007.11.087
|
71 |
殷榕灿,崔玉民,苗慧,等. TiO2光催化降解有机染料反应机理[J]. 水处理技术,2020,46(3):11-15.
|
|
YIN Rongcan, CUI Yumin, MIAO Hui,et al. Reaction mechanisms of photocatalytic degradation of organic dyes with TiO2 [J]. Technology of Water Treatment,2020,46(3):11-15.
|
72 |
DJELLABI R, YANG Bo, XIAO Ke,et al. Unravelling the mechanistic role of TiOC bonding bridge at titania/lignocellulosic biomass interface for Cr(Ⅵ) photoreduction under visible light[J]. Journal of Colloid and Interface Science, 2019, 553:409-417. doi: 10.1016/j.jcis.2019.06.052
|
73 |
张鹏会,李艳春,胡怀生,等. 生物炭基光催化剂的制备、性能及环境应用研究进展[J]. 化工进展,2022,41(1):1-16.
|
|
ZHANG Penghui, LI Yanchun, HU Huaisheng,et al. Preparation of biochar-based photocatalysts,properities and environmental applications:A review[J]. Chemical Industry and Engineering Progress,2022,41(1):1-16.
|
74 |
WANG Xiaojing, LIU Yafei, HU Zhonghua,et al. Degradation of methyl orange by composite photocatalysts nano-TiO 2 immobilized on activated carbons of different porosities[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):1061-1067. doi: 10.1016/j.jhazmat.2009.04.058
|