1 |
ROHRER G S, HENRICH V E, BONNELL D A. Structure of the reduced TiO 2(110) surface determined by scanning tunneling microscopy[J]. Science, 1990, 250(4985):1239-1241. doi: 10.1126/science.250.4985.1239
|
2 |
CUNHA P L R, VIEIRA Í G P, ARRIAGA Â M C,et al. Isolation and characterization of galactomannan from Dimorphandra gardneriana Tul. seeds as a potential guar gum substitute[J]. Food Hydrocolloids, 2009, 23(3):880-885. doi: 10.1016/j.foodhyd.2008.05.005
|
3 |
XIA Shunxiang, ZHANG Laibao, DAVLETSHIN A,et al. Application of polysaccharide biopolymer in petroleum recovery[J]. Polymers, 2020, 12(9):1860. doi: 10.3390/polym12091860
|
4 |
MADNI A, KHALID A, WAHID F,et al. Preparation and applications of guar gum composites in biomedical,pharmaceutical,food,and cosmetics industries[J]. Current Nanoscience, 2021, 17(3):365-379. doi: 10.2174/1573413716999201110142551
|
5 |
YIN Zichen, WANG Yanling, Jingshan SAN. Adsorption behavior of hydroxypropyl guar gum onto montmorillonite and reducing adsorption in the reservoir[J]. Applied Clay Science, 2018, 166:123-130. doi: 10.1016/j.clay.2018.09.015
|
6 |
ALZOBAIDI S, LEE J, JIRIES S,et al. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing[J]. Journal of Colloid and Interface Science, 2018, 526:253-267. doi: 10.1016/j.jcis.2018.04.056
|
7 |
CAO Xiaoqing, GAO Xue, ZHENG Kai,et al. Efficient pollutants removal and microbial flexibility under high-salt gradient of an oilfield wastewater treatment system[J]. The Science of the Total Environment, 2022, 823:153619. doi: 10.1016/j.scitotenv.2022.153619
|
8 |
LI Yongfei, LIU Jiangbo, LI Wenjuan,et al. Enhanced sorption for the oil spills by SDS-modified rice straw[J]. Gels, 2023, 9(4):285. doi: 10.3390/gels9040285
|
9 |
LUEK J L, GONSIOR M. Organic compounds in hydraulic fracturing fluids and wastewaters:A review[J]. Water Research, 2017, 123:536-548. doi: 10.1016/j.watres.2017.07.012
|
10 |
FITCH A, BALDERAS-HERNANDEZ P, IBANEZ J G. Electrochemical technologies combined with physical,biological,and chemical processes for the treatment of pollutants and wastes:A review[J]. Journal of Environmental Chemical Engineering, 2022, 10(3):107810. doi: 10.1016/j.jece.2022.107810
|
11 |
AHMED S F, MOFIJUR M, NUZHAT S,et al. Recent developments in physical,biological,chemical,and hybrid treatment techniques for removing emerging contaminants from wastewater[J]. Journal of Hazardous Materials, 2021, 416:125912. doi: 10.1016/j.jhazmat.2021.125912
|
12 |
SARAVANAN A, KUMAR P S, HEMAVATHY R V,et al. A comprehensive review on sources,analysis and toxicity of environmental pollutants and its removal methods from water environment[J]. The Science of the Total Environment, 2022, 812:152456. doi: 10.1016/j.scitotenv.2021.152456
|
13 |
SARAVANAN A, SENTHIL KUMAR P, JEEVANANTHAM S,et al. Effective water/wastewater treatment methodologies for toxic pollutants removal:Processes and applications towards sustainable development[J]. Chemosphere, 2021, 280:130595. doi: 10.1016/j.chemosphere.2021.130595
|
14 |
RASHEED T, SHAFI S, BILAL M,et al. Surfactants-based remediation as an effective approach for removal of environmental pollutants:A review[J]. Journal of Molecular Liquids, 2020, 318:113960. doi: 10.1016/j.molliq.2020.113960
|
15 |
QI Meiyun, LIN Ping, SHI Qiyu,et al. A metal-organic framework(MOF) and graphene oxide(GO) based peroxymonosulfate(PMS) activator applied in pollutant removal[J]. Process Safety and Environmental Protection, 2023, 171:847-858. doi: 10.1016/j.psep.2023.01.069
|
16 |
XIE Fangshu, SHI Qiyu, BAI Huiling,et al. An anode fabricated by Co electrodeposition on ZIF-8/CNTs/CF for peroxymonosulfate(PMS) activation[J]. Chemosphere, 2023, 313:137384. doi: 10.1016/j.chemosphere.2022.137384
|
17 |
LI Lejing, HU Zhuofeng, YU J C. On-demand synthesis of H 2O 2 by water oxidation for sustainable resource production and organic pollutant degradation[J]. Angewandte Chemie International Edition, 2020, 59(46):20538-20544. doi: 10.1002/anie.202008031
|
18 |
ZHANG Menghui, DONG Hui, ZHAO Liang,et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. The Science of the Total Environment, 2019, 670:110-121. doi: 10.1016/j.scitotenv.2019.03.180
|
19 |
SHI Qiyu, WANG Wangbo, ZHANG Hongmin,et al. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal[J]. Bioresource Technology, 2023, 383:129213. doi: 10.1016/j.biortech.2023.129213
|
20 |
AMINA, ABBAS Q, SHAKOOR A,et al. In-situ oxidative degradation of sulfamethoxazole by calcium peroxide/persulfate dual oxidant system in water and soil[J]. Process Safety and Environmental Protection, 2022, 164:696-705. doi: 10.1016/j.psep.2022.06.052
|
21 |
HE Fu, MA Wencheng, ZHONG Dan,et al. Degradation of chloramphenicol by α-FeOOH-activated two different double-oxidant systems with hydroxylamine assistance[J]. Chemosphere, 2020, 250:126150. doi: 10.1016/j.chemosphere.2020.126150
|
22 |
TANG Ying, REN Haomiao, YANG Pengwei,et al. Treatment of fracturing fluid waste by Fentonreactionusingtransition metal complexes catalyzes oxidation of hydroxypropyl guar gum athigh pH[J]. Environmental Chemistry Letters, 2019, 17(1):559-564. doi: 10.1007/s10311-018-0805-9
|
23 |
ZHOU Peng, ZHANG Jing, LIU Jilong,et al. Degradation of organic contaminants by activated persulfate using zero valent copper in acidic aqueous conditions[J]. RSC Advances, 2016, 6(101):99532-99539. doi: 10.1039/c6ra24431a
|
24 |
SONG Zhenzhen, GAO Hongyu, ZHANG Weijun,et al. Reinforce of hydrotalcite-like loaded TiO 2 composite material prepared by Ti-bearing blast furnace slag for photo-degradation of tetracycline[J]. Journal of Water Process Engineering, 2020, 36:101399. doi: 10.1016/j.jwpe.2020.101399
|
25 |
ZHONG Dan, ZHOU Ziyi, MA Wencheng,et al. Study on degradation of chloramphenicol by H 2O 2/PMS double-oxidation system catalyzed by pipe deposits from water networks[J]. Journal of Environmental Chemical Engineering, 2022, 10(3):107529. doi: 10.1016/j.jece.2022.107529
|
26 |
IKE I A, LEE Y,HUR J. Impacts of advanced oxidation processes on disinfection byproducts from dissolved organic matter upon post-chlor(am)ination:A critical review[J]. Chemical Engineering Journal, 2019, 375:121929. doi: 10.1016/j.cej.2019.121929
|
27 |
WANG Zhaodi, ZANG Ying, LIU Zhijuan,et al. Opening catalytic sites in the copper-triazoles framework via defect chemistry for switching on the proton reduction[J]. Applied Catalysis B:Environmental, 2021, 288:119941. doi: 10.1016/j.apcatb.2021.119941
|
28 |
JIN Hua, ZHU Lin, XU Xinyuan,et al. Synergistic pollutant degradation by Ag 3PO 4/Fe 3O 4/graphene oxide visible light-persulfate coupled system:Mechanism elucidation and performance optimization[J]. Catalysis Communications, 2023, 177:106643. doi: 10.1016/j.catcom.2023.106643
|
29 |
ZOU Xiaoli, ZHOU Tao, MAO Juan,et al. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe 0/persulfate Fenton-like system[J]. Chemical Engineering Journal, 2014, 257:36-44. doi: 10.1016/j.cej.2014.07.048
|
30 |
ZHANG Jinghu, MENG Sugang, YE Xiangju,et al. Synergistic effect of photocatalysis and thermocatalysis for selective oxidation of aromatic alcohols to aromatic aldehydes using Zn 3In 2S 6@ZnO composite[J]. Applied Catalysis B:Environmental, 2017, 218:420-429. doi: 10.1016/j.apcatb.2017.06.078
|
31 |
WEN Gang, WANG Shengjun, MA Jun,et al. Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition[J]. Journal of Hazardous Materials, 2014, 275:193-199. doi: 10.1016/j.jhazmat.2014.05.002
|
32 |
MA Li, ZHANG Xiaoyue, LIN Dan,et al. Preparation of shaped magnesium oxide/carbon catalysts using rice grains as an exotemplate and carbon precursor[J]. Applied Catalysis A:General, 2013, 460/461:26-35. doi: 10.1016/j.apcata.2013.04.018
|
33 |
PRABU M, MANIKANDAN M, KANDASAMY P,et al. Synthesis of Biodiesel using the Mg/Al/Zn Hydrotalcite/SBA-15 Nanocomposite Catalyst[J]. ACS Omega, 2019, 4(2):3500-3507. doi: 10.1021/acsomega.8b02547
|