[1] |
|
|
ZOU Yun. Study on optimization degree and convergence of energy structure in China[J]. Statistics & Decision, 2020, 36(8):98-101. doi: 10.13546/j.cnki.tjyjc.2020.08.020
|
[2] |
王允东,王孝文,朱紫燕,等. 水中Cr(Ⅵ)还原技术的研究进展[J]. 化工环保,2022,42(6):661-668.
|
|
WANG Yundong, WANG Xiaowen, ZHU Ziyan,et al. Research progress on reduction technology of Cr(Ⅵ) in water[J]. Environmental Protection of Chemical Industry,2022,42(6):661-668.
|
[3] |
MAO Ze, WU Dingsheng, SARKODIE B,et al. Scalable,acid-resistant polyaniline deposited amidoxime PAN nanofibers for efficient adsorption and detoxification of Cr(Ⅵ) wastewater[J]. Journal of Environmental Chemical Engineering, 2024, 12(5):113153. doi: 10.1016/j.jece.2024.113153
|
[4] |
CHU Ruoning, GUO Xiaojie, ZHANG Yongjun,et al. Rapid immobilization of Cr(Ⅵ) from aqueous waste through multi-functionalized surface-modified lignin-based aerogels:Dynamic and mechanism analyses[J]. Materials Today Communications, 2024, 38:107676. doi: 10.1016/j.mtcomm.2023.107676
|
[5] |
FU Saiou, DI Junzhen, GUO Xuying,et al. Preparation of lignite-loaded nano-FeS and its performance for treating acid Cr(Ⅵ)-containing wastewater[J]. Environmental Science and Pollution Research, 2023, 30(2):3351-3366. doi: 10.1007/s11356-022-22411-3
|
[6] |
MISHRA S, MAITI A. Study of simultaneous bioremediation of mixed reactive dyes and Cr(Ⅵ) containing wastewater through designed experiments[J]. Environmental Monitoring and Assessment, 2019, 191(12):766. doi: 10.1007/s10661-019-7976-0
|
[7] |
龙泽清,宋慧,仙光,等. Bi2S3-BiOI异质结光催化去除水中Cr(Ⅵ)的研究[J]. 工业水处理,2023,43(10):109-116.
|
|
LONG Zeqing, SONG Hui, XIAN Guang,et al. Photocatalytic removal of Cr(Ⅵ) from water by Bi2S3-BiOI heterojunctions[J]. Industrial Water Treatment,2023,43(10):109-116.
|
[8] |
马占强,张凯悦,郭葳,等. g-C3N5纳米片光催化还原Cr(Ⅵ)和抗菌性能研究[J]. 化工新型材料,2023,51(6):191-198.
|
|
MA Zhanqiang, ZHANG Kaiyue, GUO Wei,et al. Study on photocatalytic reduction of Cr(Ⅵ) and antibacterial activities of g-C3N5 nanosheets[J]. New Chemical Materials,2023,51(6):191-198.
|
[9] |
KUMAR P, VAHIDZADEH E, THAKUR U K,et al. C 3N 5:A low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic,photovoltaic and adsorbent applications[J]. Journal of the American Chemical Society, 2019, 141(13):5415-5436. doi: 10.1021/jacs.9b00144
|
[10] |
ZHANG Junlei, TAO Hengcong, WU Shanshan,et al. Enhanced durability of nitric oxide removal on TiO 2(P25) under visible light:Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C 3N 5 [J]. Applied Catalysis B:Environmental, 2021, 296:120372. doi: 10.1016/j.apcatb.2021.120372
|
[11] |
LIU Sile, BU Yifu, CHENG Song,et al. Preparation of g-C 3N 5/g-C 3N 4 heterojunction for methyl orange photocatalytic degradation:Mechanism analysis[J]. Journal of Water Process Engineering, 2023, 54:104019. doi: 10.1016/j.jwpe.2023.104019
|
[12] |
LIU Tianyu, YANG Guojiang, WANG Wei,et al. Preparation of C 3N 5 nanosheets with enhanced performance in photocatalytic methylene blue(MB) degradation and H 2-evolution from water splitting[J]. Environmental Research, 2020, 188:109741. doi: 10.1016/j.envres.2020.109741
|
[13] |
GUJRAL H S, SINGH G, YANG J H,et al. Mesoporous titanium carbonitride derived from mesoporous C 3N 5 for highly efficient hydrogen evolution reaction[J]. Carbon, 2022, 195:9-18. doi: 10.1016/j.carbon.2022.03.060
|
[14] |
DU Xing, LIU Qianqian, CHENG Miao,et al. Single-atom Pt decorated g-C 3N 5 nanorods as highly efficient photocatalyst for H 2 evolution and wastewater purification[J]. International Journal of Hydrogen Energy, 2024, 53:353-363. doi: 10.1016/j.ijhydene.2023.12.035
|
[15] |
FU Cheng, WU Tao, SUN Guowei,et al. Dual-defect enhanced piezocatalytic performance of C 3N 5 for multifunctional applications[J]. Applied Catalysis B:Environmental, 2023, 323:122196. doi: 10.1016/j.apcatb.2022.122196
|
[16] |
LI Qi, SONG Shizhu, MO Zhiyong,et al. Hollow carbon nanospheres@graphitic C 3N 5 heterostructures for enhanced oxygen electroreduction[J]. Applied Surface Science, 2022, 579:152006. doi: 10.1016/j.apsusc.2021.152006
|
[17] |
YANG Huixing, LI Wei, JIANG Yangyang,et al. Diethylenetriamine-CdS hybrid materials(CdS-DETA) loaded nitrogen-rich carbon nitride(g-C 3N 5) for enhanced hydrogen production and photocatalytic degradation:Enhancement based on band bending[J]. Separation and Purification Technology, 2023, 304:122375. doi: 10.1016/j.seppur.2022.122375
|
[18] |
VADIVEL S, FUJII M, RAJENDRAN S. Novel S-scheme 2D/2D Bi 4O 5Br 2 nanoplatelets/g-C 3N 5 heterojunctions with enhanced photocatalytic activity towards organic pollutants removal[J]. Environmental Research, 2022, 213:113736. doi: 10.1016/j.envres.2022.113736
|
[19] |
|
|
BAI Jinglei, YANG Binsheng, LIU Bin. Preparation and degradation activity of bismuth doped C 3N 5 photocatalytic materials[J]. Journal of Shanxi University(Natural Science Edition), 2022, 45(5):1319-1325. doi: 10.13451/j.sxu.ns.2020133
|
[20] |
|
|
JIN Qingqing, LIANG Xiaoyi, ZHANG Jia’nan,et al. Study on adsorption performance of modified spherical activated carbon for ammonia[J]. Inorganic Chemicals Industry, 2021, 53(4):61-66. doi: 10.11962/1006-4990.2020-0318
|
[21] |
卜义夫,刘思乐,宋丹丹,等. 废旧涤纶基活性炭负载g-C3N4光催化剂的制备及其对亚甲基蓝的光催化降解[J]. 毛纺科技,2023,51(2):40-48.
|
|
BU Yifu, LIU Sile, SONG Dandan,et al. Preparation of waste polyester-based activated carbon loaded g-C3N4 photocatalyst and its photocatalytic degradation of methylene blue[J]. Wool Textile Journal,2023,51(2):40-48.
|
[22] |
WANG Haiyan, LI Mingxia, LI Huan,et al. Porous graphitic carbon nitride with controllable nitrogen vacancies:As promising catalyst for enhanced degradation of pollutant under visible light[J]. Materials & Design, 2019, 162:210-218. doi: 10.1016/j.matdes.2018.11.049
|
[23] |
THARUMAN S, BALAKUMAR V, VINODHINI J,et al. Visible light driven photocatalytic performance of 3D TiO 2/g-C 3N 5 nanocomposite via Z-scheme charge transfer promotion for water purification[J]. Journal of Molecular Liquids, 2023, 371:121101. doi: 10.1016/j.molliq.2022.121101
|
[24] |
|
|
ZHAO Wenpu, ZHAO Xiaodong, JI Huiming,et al. Preparation of SiO 2/g-C 3N 4 composite material by 3D printing and its treatment properties for wastewater containing dyes[J]. Industrial Water Treatment, 2024, 44(3):64-73. doi: 10.19965/j.cnki.iwt.2023-0209
|
[25] |
RAJENDRAN S, CHELLAPANDI T, USHAVIPINACHANDRAN V,et al. Sustainable 2D Bi 2WO 6/g-C 3N 5 heterostructure as visible light-triggered abatement of colorless endocrine disruptors in wastewater[J]. Applied Surface Science, 2022, 577:151809. doi: 10.1016/j.apsusc.2021.151809
|
[26] |
SHI Jianhui, CHEN Tian, GUO Chunli,et al. The bifunctional composites of AC restrain the stack of g-C 3N 4 with the excellent adsorption-photocatalytic performance for the removal of RhB[J]. Colloids and Surfaces A, 2019, 580:123701. doi: 10.1016/j.colsurfa.2019.123701
|
[27] |
FENG Peng, CUI Kangping, Zibin HAI,et al. Facile synthesis of activated carbon loaded g-C 3N 4 composite with enhanced photocatalytic performance under visible light[J]. Diamond & Related Materials, 2023, 136:109921. doi: 10.1016/j.diamond.2023.109921
|
[28] |
LIAO Wenning, YANG Zhiquan, WANG Ying,et al. Novel Z-scheme Nb 2O 5/C 3N 5 photocatalyst for boosted degradation of tetracycline antibiotics by visible light-assisted activation of persulfate system[J]. Chemical Engineering Journal, 2023, 478:147346. doi: 10.1016/j.cej.2023.147346
|
[29] |
GAN Wei, FU Xucheng, JIN Juncheng,et al. Nitrogen-rich carbon nitride(C 3N 5) coupled with oxygen vacancy TiO 2 arrays for efficient photocatalytic H 2O 2 production[J]. Journal of Colloid and Interface Science, 2024, 653:1028-1039. doi: 10.1016/j.jcis.2023.09.136
|
[30] |
唐贝. ZnO/g-C3N4异质结光催化材料的制备及对吡啶的降解[J]. 无机盐工业,2024,56(4):133-142.
|
|
TANG Bei. Preparation of ZnO/g-C3N4 heterojunction photocatalytic material and its degradation of pyridine[J]. Inorganic Chemicals Industry,2024,56(4):133-142.
|
[31] |
ZENG Yunxiong, LIU Xia, LIU Chengbin,et al. Scalable one-step production of porous oxygen-doped g-C 3N 4 nanorods with effective electron separation for excellent visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2018, 224:1-9. doi: 10.1016/j.apcatb.2017.10.042
|
[32] |
VAHABIRAD S, NEZAMZADEH-EJHIEH A. Co-precipitation synthesis of BiOI/(BiO) 2CO 3:Brief characterization and the kinetic study in the photodegradation and mineralization of sulfasalazine[J]. Journal of Solid State Chemistry, 2022, 310:123018. doi: 10.1016/j.jssc.2022.123018
|
[33] |
兰蓥华,陈艳梅,马瑞霄,等. 铈钛氧化物-凹凸棒土的制备及其光催化性能[J]. 无机盐工业,2023,55(4):133-140.
|
|
LAN Yinghua, CHEN Yanmei, MA Ruixiao,et al. Preparation and photocatalytic performance of Ce-Ti oxide-attapulgite composites[J]. Inorganic Chemicals Industry,2023,55(4):133-140.
|
[34] |
|
|
WU Lin, HU Minglei, WANG Liping,et al. Preparation of TiHAP@g-C 3N 4 heterojunction and photocatalytic degradation of methyl orange[J]. Journal of Inorganic Materials, 2023, 38(5):503-512. doi: 10.15541/jim20220413
|
[35] |
GUO Bingrong, LIU Bin, WANG Chaoli,et al. S-scheme Ti 0.7Sn 0.3O 2/g-C 3N 4 heterojunction composite for enhanced photocatalytic pollutants degradation[J]. Journal of Environmental Chemical Engineering, 2022, 10(2):107118. doi: 10.1016/j.jece.2021.107118
|
[36] |
WANG Juan, WANG Guohong, CHENG Bei,et al. Sulfur-doped g-C 3N 4/TiO 2 S-scheme heterojunction photocatalyst for congo red photodegradation[J]. Chinese Journal of Catalysis, 2021, 42(1):56-68. doi: 10.1016/s1872-2067(20)63634-8
|
[37] |
KIM S B, LEE S Y, PARK S J. TiO 2/Multi-walled carbon nanotube electrospun nanofibers mats for enhanced Cr(Ⅵ) photoreduction[J]. Journal of Cleaner Production, 2024, 448:141611. doi: 10.1016/j.jclepro.2024.141611
|
[38] |
YANG Jing, LI Li, WANG Jie,et al. Synthesis of visible-light driven CdS/(I/S) composite with efficient photocatalytic activities for dyes and Cr(Ⅵ)[J]. Optical Materials, 2024, 148:114963. doi: 10.1016/j.optmat.2024.114963
|