1 |
绿色和平. 石狮伍堡工业集控区印染企业有毒有害物质排放调查报告[R/OL]. [2020-07-29]. https://max.book118.com/html/2018/0927/7003151016001151.shtm.
|
2 |
纺织工业水污染排放标准》编制组. 《纺织染整工业废水中锑污染物排放标准(第二次征求意见稿)》编制说明[EB/OL]. [2020-07-29]. https://huanbao.bjx.com.cn/news/20180213/880888.shtml.
|
3 |
蒋红, 宋淼. 纺织印染行业锑的来源及应对措施[C]. 青岛: 中国印染行业协会, 2016.
|
4 |
李威, 周尚平, 邹骏华, 等. 以印染废水为主的城镇污水处理厂锑污染来源特征分析[J]. 浙江大学学报(理学版), 2018, 45 (5): 569- 575.
URL
|
5 |
中华人民共和国生态环境部. 关于政协十二届全国委员会第四次会议第1764号(资源环境类135号)提案答复的函[EB/OL]. [2016-08-05]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201610/t20161027_366356_wh.htm
|
6 |
赵霞, 罗培松, 相巧明. 绍兴市典型印染废水中重金属锑排放现状及排放源调查[J]. 中国环境监测, 2016, 32 (4): 91- 97.
URL
|
7 |
许锴, 王郑, 王子杰, 等. 水中重金属污染物锑的去除及回用技术研究进展[J]. 应用化工, 2019, 48 (7): 1700- 1705.
doi: 10.3969/j.issn.1671-3206.2019.07.044
|
8 |
羊小玉, 周律. 混凝技术在印染废水处理中的应用及研究进展[J]. 化工环保, 2016, 36 (1): 1- 4.
doi: 10.3969/j.issn.1006-1878.2016.01.001
|
9 |
SONG Peipei , YANG Zhaohui , ZENG Guangming , et al. Optimization, kinetics, isotherms, and thermodynamics studies of antimony removal in electrocoagulation process[J]. Water Air And Soil Pollution, 2015, 226, 1- 12.
URL
|
10 |
王麒, 薛罡, 钱雅洁, 等. ZVI类Fenton-混凝同步去除印染废水中苯胺、Cr6+、锑[J]. 工业水处理, 2019, 39 (9): 87- 90.
URL
|
11 |
金旭, 游少鸿, 林华, 等. 离子交换树脂对水中锑的吸附性能研究[J]. 工业安全与环保, 2016, 42 (2): 29- 32.
doi: 10.3969/j.issn.1001-425X.2016.02.009
|
12 |
王文龙, 胡洪营, 刘玉红, 等. 混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性[J]. 环境科学学报, 2019, 39 (10): 3374- 3380.
URL
|
13 |
MA Baiwen , WANG Xing , LIU Ruiping , et al. Synergistic process using Fe hydrolytic flocs and ultrafiltration membrane for enhanced antimony (Ⅴ) removal[J]. Journal of Membrane Science, 2017, 537, 93- 100.
doi: 10.1016/j.memsci.2017.05.022
|
14 |
CHENG Kuan , WU Yinan , ZHANG Bingru , et al. New insights into the removal of antimony from water using an iron-based metal-organic framework: Adsorption behaviors and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125054.
doi: 10.1016/j.colsurfa.2020.125054
|
15 |
ZHANG Wei , LI Na , XIAO Ting , et al. Removal of antimonite and antimonate from water using Fe-based metal-organic frameworks: The relationship between framework structure and adsorption performance[J]. Journal of Environmental Sciences, 2019, 86, 213- 224.
doi: 10.1016/j.jes.2019.06.001
|
16 |
聂晓, 阎莉, 张建锋. 高指数晶面二氧化钛对砷、锑的共吸附去除[J]. 环境化学, 2018, 37 (2): 318- 326.
URL
|
17 |
HE Xingyu , MIN Xiaobo , LUO Xubiao . Efficient removal of antimony (Ⅲ, Ⅴ) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study[J]. Journal of Chemical & Engineering Data, 2017, 62 (4): 1519- 1529.
URL
|
18 |
蒋婷, 鲍玥, 李威, 等. nZVI/AC复合材料对水中锑的去除[J]. 环境科学, 2017, 38 (11): 4632- 4640.
URL
|
19 |
WAN Shunli , QIU Lian , LI Yan , et al. Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure[J]. Chemical Engineering Journal, 2020, 402, 126021.
doi: 10.1016/j.cej.2020.126021
|
20 |
YOU Deng , SHI Hui , XI Yu , et al. Simultaneous heavy metals removal via in situ construction of multivariate metal-organic gels in actual wastewater and the reutilization for Sb (Ⅴ) capture[J]. Chemical Engineering Journal, 2020, 400, 125359.
doi: 10.1016/j.cej.2020.125359
|
21 |
QI Pengfei , LUO Rong , PICHLER T , et al. Development of a magnetic core-shell Fe3O4@TA@UiO-66 microsphere for removal of arsenic (Ⅲ) and antimony (Ⅲ) from aqueous solution[J]. Journal of Hazardous Materials, 2019, 378, 120721.
doi: 10.1016/j.jhazmat.2019.05.114
|
22 |
ROOYGAR A A , MALLAH M H , ABOLGHASEMI H , et al. New "magmolecular" process for the separation of antimony (Ⅲ) from aqueous solution[J]. Journal of Chemical & Engineering Data, 2014, 59 (11): 3545- 3554.
URL
|
23 |
REN Shucheng , AI Yongjian , ZHANG Xinyue , et al. Recycling antimony (Ⅲ) by magnetic carbon nanospheres: Turning waste to recoverable catalytic for synthesis of esters and triazoles[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (1): 469- 477.
URL
|
24 |
SAITO T , TSUNEDA S , HIRATA A , et al. Removal of antimony (Ⅲ) using polyol-ligand-containing porous hollow-fiber membranes[J]. Separation Science and Technology, 2004, 39 (13): 3011- 3022.
doi: 10.1081/SS-200033727
|
25 |
ZHANG Guoping , OUYANG Xiaoxue , LI Haixia , et al. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria[J]. International Biodeterioration & Biodegradation, 2016, 115, 148- 155.
URL
|
26 |
BAI Yaohui , JEFFERSON W A , LIANG Jinsong , et al. Antimony oxidation and adsorption by in situ formed biogenic Mn oxide and Fe-Mn oxides[J]. Journal of Environmental Sciences, 2017, 54, 126- 134.
doi: 10.1016/j.jes.2016.05.026
|
27 |
曹流. 电化学氢化物发生法处理含锑废水及对锑的回收[J]. 建材与装饰, 2020, (24): 171- 172.
doi: 10.3969/j.issn.1673-0038.2020.24.085
|
28 |
中华人民共和国生态环境部. 中华人民共和国清洁生产促进法[EB/OL]. [2019-04-28]. http://www.gov.cn/gongbao/content/2002/content_61640.htm
|
29 |
王晨. 纺织化学品的品种与市场[J]. 精细与专用化学品, 2016, 24 (2): 1- 4.
doi: 10.3969/j.issn.1008-1100.2016.02.001
|