| [1] |
GUO Xu, ONG W M, ZHAO Heping,et al. Enzyme-induced reactive oxygen species trigger oxidative degradation of sulfamethoxazole within a methanotrophic biofilm[J]. Water Research, 2024, 253:121330. doi: 10.1016/j.watres.2024.121330
|
| [2] |
DING Shiyuan, NIU Junfeng, BAO Yueping,et al. Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi 2O 3/Bi 2O 2CO 3/Sr 6Bi 2O 9 photocatalyst[J]. Journal of Hazardous Materials, 2013, 262:812-818. doi: 10.1016/j.jhazmat.2013.09.048
|
| [3] |
GANIYU S O, SABLE S, GAMAL EL-DIN M. Advanced oxidation processes for the degradation of dissolved organics in produced water:A review of process performance,degradation kinetics and pathway[J]. Chemical Engineering Journal, 2022, 429:132492. doi: 10.1016/j.cej.2021.132492
|
| [4] |
MA Shouchun, YANG Dong, GUAN Yina,et al. Maximally exploiting active sites on yolk@shell nanoreactor:Nearly 100% PMS activation efficiency and outstanding performance over full pH range in Fenton-like reaction[J]. Applied Catalysis B:Environmental, 2022, 316:121594. doi: 10.1016/j.apcatb.2022.121594
|
| [5] |
LI Yangju, DONG Haoran, LI Long,et al. Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes[J]. Water Research, 2021, 192:116850. doi: 10.1016/j.watres.2021.116850
|
| [6] |
CHENG Minxian, MA Rui, CHAI Guodong,et al. Nitrogen-doped carbonized polyaniline ( N-CPANI) for peroxydisulfate (PDS) activation towards efficient degradation of doxycycline (DOX) via the non-radical pathway dominated by electron transfer[J]. Chemical Engineering Journal, 2023, 453:139810. doi: 10.1016/j.cej.2022.139810
|
| [7] |
ZHANG Heng, JI Fangzhou, ZHANG Yunhong,et al. Catalytic ozonation of N, N-dimethylacetamide (DMAC) in aqueous solution using nanoscaled magnetic CuFe 2O 4 [J]. Separation and Purification Technology, 2018, 193:368-377. doi: 10.1016/j.seppur.2017.10.028
|
| [8] |
LI Jun, REN Yi, JI Fangzhou,et al. Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe 2O 4 magnetic nano-particles[J]. Chemical Engineering Journal, 2017, 324:63-73. doi: 10.1016/j.cej.2017.04.104
|
| [9] |
YAN Jianfei, PENG Jiali, LAI Leiduo,et al. Activation CuFe 2O 4 by hydroxylamine for oxidation of antibiotic sulfamethoxazole[J]. Environmental Science & Technology, 2018, 52(24):14302-14310. doi: 10.1021/acs.est.8b03340
|
| [10] |
XIANG Wei, ZHOU Tao, WANG Yifan,et al. Catalytic oxidation of diclofenac by hydroxylamine-enhanced Cu nanoparticles and the efficient neutral heterogeneous-homogeneous reactive copper cycle[J]. Water Research, 2019, 153:274-283. doi: 10.1016/j.watres.2019.01.024
|
| [11] |
XIANG Wei, HUANG Mingjie, WU Xiaohui,et al. Amplification effects of magnetic field on hydroxylamine-promoted ZVI/H 2O 2 near-neutral Fenton like system[J]. Chinese Chemical Letters, 2022, 33(3):1275-1278. doi: 10.1016/j.cclet.2021.07.072
|
| [12] |
XIANG Wei, HUANG Mingjie, WANG Yifan,et al. New insight in the O 2 activation by nano Fe/Cu bimetals:The synergistic role of Cu(0) and Fe(Ⅱ)[J]. Chinese Chemical Letters, 2020, 31(10):2831-2834. doi: 10.1016/j.cclet.2020.08.006
|
| [13] |
LEE H J, KIM H E, LEE Changha. Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes[J]. Water Research, 2017, 110:83-90. doi: 10.1016/j.watres.2016.12.014
|
| [14] |
HOU Xiaojing, HUANG Xiaopeng, JIA Falong,et al. Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants[J]. Environmental Science & Technology, 2017, 51(9):5118-5126. doi: 10.1021/acs.est.6b05906
|
| [15] |
OH D, LEE C S, KANG Y G,et al. Hydroxylamine-assisted peroxymonosulfate activation using cobalt ferrite for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2020, 386:123751. doi: 10.1016/j.cej.2019.123751
|
| [16] |
XIANG Wei, CHEN Hao, ZHONG Zhenxing,et al. Efficient degradation of carbamazepine in a neutral sonochemical FeS/persulfate system based on the enhanced heterogeneous-homogeneous sulfur-iron cycle[J]. Separation and Purification Technology, 2022, 282:120041. doi: 10.1016/j.seppur.2021.120041
|
| [17] |
WANG Bingyu, LI Qiaoqiao, Ying LÜ,et al. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe 2O 4/SBC as a heterogeneous catalyst for bisphenol S degradation[J]. Chemical Engineering Journal, 2021, 416:129162. doi: 10.1016/j.cej.2021.129162
|
| [18] |
XIANG Wei, ZHANG Beiping, ZHOU Tao,et al. An insight in magnetic field enhanced zero-valent iron/H 2O 2 Fenton-like systems:Critical role and evolution of the pristine iron oxides layer[J]. Scientific Reports, 2016, 6:24094. doi: 10.1038/srep24094
|
| [19] |
SU Chunming, PULS R W. Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect,apparent activation energy,and intermediate products[J]. Environmental Science & Technology, 1999, 33(1):163-168. doi: 10.1021/es980481a
|
| [20] |
REN Yueming, LIN Lingqiang, MA Jun,et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe 2O 4 (M=Co,Cu,Mn,and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B:Environmental, 2015, 165:572-578. doi: 10.1016/j.apcatb.2014.10.051
|
| [21] |
张磊,张进,闫新龙. 多孔Ni/Co水滑石活化过硫酸盐降解磺胺甲唑研究[J]. 工业水处理,2024,44(8):162-170.
|
|
ZHANG Lei, ZHANG Jin, YAN Xinlong. Synthesis of porous Ni/Co LDHs and its degradation behavior for sulfamethoxazole via peroxymonosulfate activation[J]. Industrial Water Treatment,2024,44(8):162-170.
|
| [22] |
LI Meng, ZHANG Hongguo, CHENG Jiliang,et al. Unveiling the decomposing and mineralizing mechanism of novel perfluoroalkyl acids via hydroxyl radical dominated electrochemical oxidation[J]. Applied Catalysis B:Environment and Energy, 2024, 351:123983. doi: 10.1016/j.apcatb.2024.123983
|
| [23] |
张驰,魏佳华,侯雪,等. CoFe2O4/MoS2的制备及活化PMS降解四环素[J]. 工业水处理,2025,45(6):194-201.
|
|
ZHANG Chi, WEI Jiahua, HOU Xue,et al. Preparation of CoFe2O4/MoS2 and activation of PMS for tetracycline degradation[J]. Industrial Water Treatment,2025,45(6):194-201.
|
| [24] |
SUN Chen, WANG Huan, JIANG Tao,et al. Surface defect and carbonyl engineering of CNTs via oxygen-plasma etching:Oriented production of singlet oxygen from peroxymonosulfate activation[J]. Separation and Purification Technology, 2024, 337:126454. doi: 10.1016/j.seppur.2024.126454
|
| [25] |
LEE H, LEE H J, SEO J,et al. Activation of oxygen and hydrogen peroxide by copper(Ⅱ) coupled with hydroxylamine for oxidation of organic contaminants[J]. Environmental Science & Technology, 2016, 50(15):8231-8238. doi: 10.1021/acs.est.6b02067
|
| [26] |
ZHOU Tao, ZOU Xiaoli, MAO Juan,et al. Decomposition of sulfadiazine in a sonochemical Fe 0-catalyzed persulfate system:Parameters optimizing and interferences of wastewater matrix[J]. Applied Catalysis B:Environmental, 2016, 185:31-41. doi: 10.1016/j.apcatb.2015.12.004
|
| [27] |
QIN Cheng, QI Yumeng, TENG Xiaolei,et al. Degradation of bisphonel AF (BPAF) by zero-valent iron activated persulfate:Kinetics,mechanisms,theoretical calculations,and effect of co-existing chloride[J]. Chemosphere, 2023, 316:137774. doi: 10.1016/j.chemosphere.2023.137774
|
| [28] |
KIM C, THAO T T, KIM J H,et al. Effects of the formation of reactive chlorine species on oxidation process using persulfate and nano zero-valent iron[J]. Chemosphere,2020,250:126266.
|
| [29] |
PENG Jianbiao, SHI Huanhuan, LI Jianhua,et al. Bicarbonate enhanced removal of triclosan by copper(Ⅱ) catalyzed Fenton-like reaction in aqueous solution[J]. Chemical Engineering Journal, 2016, 306:484-491. doi: 10.1016/j.cej.2016.07.088
|
| [30] |
LI Jiawei, LIU Zonghao, ZHAO Yan,et al. Heat enhanced bisphenol AF degradation in CoFe 2O 4@BC activated peroxymonosulfate process:Mechanism and the role of inorganic anions[J]. Separation and Purification Technology, 2024, 342:126968. doi: 10.1016/j.seppur.2024.126968
|