| [1] |
FAYOMI G U, MINI S E, FAYOMI O S I,et al. A mini review on the impact of sewage disposal on environment and ecosystem[J]. IOP Conference Series:Earth and Environmental Science, 2019, 331(1):012040. doi: 10.1088/1755-1315/331/1/012040
|
| [2] |
中华人民共和国国家发展和改革委员会. 环境基础设施建设水平提升行动(2023—2025年)[R]. 北京:中华人民共和国国家发展和改革委员会,2023.
|
|
National Development and Reform Commission. Action to improve the level of environmental infrastructure construction(2023-2025)[R]. Beijing:National Development and Reform Commission,2023.
|
| [3] |
国彤. 环境工程污水处理技术分析[J]. 化工设计通讯,2021,47(2):166-167.
|
|
GUO Tong. Main technical analysis of environmental engineering sewage treatment[J]. Chemical Engineering Design Communications,2021,47(2):166-167.
|
| [4] |
RYLOTT E L, BRUCE N C. How synthetic biology can help bioremediation[J]. Current Opinion in Chemical Biology, 2020, 58:86-95. doi: 10.1016/j.cbpa.2020.07.004
|
| [5] |
左旭,张永栋,陈洋洋. 生物强化技术研究进展[J]. 山东化工,2021,50(5):92-96.
|
|
ZUO Xu, ZHANG Yongdong, CHEN Yangyang. Bioaugmentation technology study[J]. Shandong Chemical Industry,2021,50(5):92-96.
|
| [6] |
NWANKWEGU A S, ZHANG Lei, XIE Deti,et al. Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects[J]. Journal of Environmental Management, 2022, 304:114313. doi: 10.1016/j.jenvman.2021.114313
|
| [7] |
WANG Jiacheng, ZHANG Lidan, HE Yujie,et al. Biodegradation of phenolic pollutants and bioaugmentation strategies:A review of current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2024, 469:133906. doi: 10.1016/j.jhazmat.2024.133906
|
| [8] |
YU Zhongtang, MOHN W W. Bioaugmentation with the resin acid-degrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent[J]. Water Research, 2002, 36(11):2793-2801. doi: 10.1016/s0043-1354(01)00496-1
|
| [9] |
李彦宇,董三强,何子晗,等. 生物强化技术在污水处理中的应用现状[J]. 石油化工应用,2024,43(5):9-13.
|
|
LI Yanyu, DONG Sanqiang, HE Zihan,et al. Application status of bioaugmentation technology in wastewater treatment[J]. Petrochemical Industry Application,2024,43(5):9-13.
|
| [10] |
程晓娇. 以环保酵素为共代谢底物强化喹啉吲哚降解并同步脱氮[D]. 太原:太原理工大学,2022.
|
|
CHENG Xiaojiao. Enhanced quinoline-indole degradation and simultaneous denitrification using garbage enzyme as a co-metabolic substrate[D]. Taiyuan:Taiyuan University of Technology,2022.
|
| [11] |
余晓龙,毛旭辉,郑焰. 群体感应调控有机污染物生物降解研究进展[J]. 环境工程技术学报,2023,13(5):1686-1693.
|
|
YU Xiaolong, MAO Xuhui, ZHENG Yan. Research progress on quorum sensing regulation of organic pollutants biodegradation[J]. Journal of Environmental Engineering Technology,2023,13(5):1686-1693.
|
| [12] |
TERADA A, KOMATSU D, OGAWA T,et al. Isolation of cyanide-degrading bacteria and molecular characterization of its cyanide-degrading nitrilase[J]. Biotechnology and Applied Biochemistry, 2022, 69(1):183-189. doi: 10.1002/bab.2095
|
| [13] |
李志琳,解宇峰,吴杰,等. 一株高效柴油降解菌Serratia sp. J-3的筛选、鉴定和降解特性[J]. 南京农业大学学报,2019,42(6):1098-1107.
|
|
LI Zhilin, XIE Yufeng, WU Jie,et al. Isolation and identification of a high efficiency diesel oil degrading strain Serratia sp. J-3 and its degradation characteristics[J]. Journal of Nanjing Agricultural University,2019,42(6):1098-1107.
|
| [14] |
徐伟超,吴翠平,张玉秀,等. 喹啉降解菌Ochrobactrum sp. 的好氧降解特性及其在焦化废水中的生物强化作用[J]. 环境科学,2017,38(5):2030-2035.
|
|
XU Weichao, WU Cuiping, ZHANG Yuxiu,et al. Aerobic degradation characteristics of the quinoline-degrading strain Ochrobactrum sp. and its bioaugmentation in coking wastewater[J]. Environmental Science,2017,38(5):2030-2035.
|
| [15] |
董春娟,吕炳南,陈志强,等. 处理生物难降解物质的有效方式:共代谢[J]. 化工环保,2003,23(2):82-86.
|
|
DONG Chunjuan, Bingnan LÜ, CHEN Zhiqiang,et al. An efficient way for biodegradation of refractory organic compounds:Cometabolism[J]. Environmental Protection of Chemical Industry,2003,23(2):82-86.
|
| [16] |
陈浩然,吕利丰,王宗平,等. 基于生物共代谢的好氧活性污泥降解苯酚废水研究[J]. 中国给水排水,2023,39(17):99-105.
|
|
CHEN Haoran, Lifeng LÜ, WANG Zongping,et al. Aerobic activated sludge for degradation of phenol wastewater based on biological co-metabolism[J]. China Water & Wastewater,2023,39(17):99-105.
|
| [17] |
卢之琪,唐俊,李洪静. 污水生物处理领域“群体感应”应用研究进展[J]. 复旦学报(自然科学版),2024,63(3):306-319.
|
|
LU Zhiqi, TANG Jun, LI Hongjing. Recent advances of quorum sensing application in wastewater biological treatment[J]. Journal of Fudan University(Natural Science),2024,63(3):306-319.
|
| [18] |
BURIAN A, PINN D, PERALTA-MARAVER I,et al. Predation increases multiple components of microbial diversity in activated sludge communities[J]. The ISME Journal, 2021, 16(4):1086-1094. doi: 10.1038/s41396-021-01145-z
|
| [19] |
YANG Guangfeng, ZHANG Qianqian, JIN Rencun. Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline(OTC) stress[J]. Bioresource Technology, 2013, 129:65-71. doi: 10.1016/j.biortech.2012.11.022
|
| [20] |
HARIPRIYAN U, GOPINATH K P, ARUN J,et al. Bioremediation of organic pollutants:A mini review on current and critical strategies for wastewater treatment[J]. Archives of Microbiology, 2022, 204(5):286. doi: 10.1007/s00203-022-02907-9
|
| [21] |
蔡天明,唐莲莲,孙佳佳,等. 一株中间苍白杆菌、菌剂及其处理化工废水的方法和处理装置:CN116004474A[P]. 2023-04-25.
|
| [22] |
杨倩. 对甲基苯磺酸高效降解菌的筛选、代谢机制及其在废水生物强化处理中的应用[D]. 南京:南京农业大学,2017.
|
|
YANG Qian. Screening and metabolic mechanism of p-toluenesulfonic acid degrading strain and its application in bioaugmentation of wastewater[D]. Nanjing:Nanjing Agricultural University,2017.
|
| [23] |
BAI Yaohui, CHANG Yangyang, LIANG Jinsong,et al. Treatment of groundwater containing Mn(Ⅱ),Fe(Ⅱ),As(Ⅲ) and Sb(Ⅲ) by bioaugmented quartz-sand filters[J]. Water Research, 2016, 106:126-134. doi: 10.1016/j.watres.2016.09.040
|
| [24] |
IKEDA-OHTSUBO W, MIYAHARA M, KIM S W,et al. Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2[J]. Journal of Bioscience and Bioengineering, 2013, 115(1):37-42. doi: 10.1016/j.jbiosc.2012.08.015
|
| [25] |
KHARE A. Experimental systems biology approaches reveal interaction mechanisms in model multispecies communities[J]. Trends in Microbiology, 2021, 29(12):1083-1094. doi: 10.1016/j.tim.2021.03.012
|
| [26] |
ZHOU Kang, QIAO Kangjian, EDGAR S,et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4):377-383. doi: 10.1038/nbt.3095
|
| [27] |
CAO Zhibei, YAN Wenlong, DING Mingzhu,et al. Construction of microbial consortia for microbial degradation of complex compounds[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:1051233. doi: 10.3389/fbioe.2022.1051233
|
| [28] |
LAWSON C E, HARCOMBE W R, HATZENPICHLER R,et al. Common principles and best practices for engineering microbiomes[J]. Nature Reviews Microbiology, 2019, 17(12):725-741. doi: 10.1038/s41579-019-0255-9
|
| [29] |
蔡文娟. 强化生物处理生活污水的高效混合菌群筛选及降解特性实验研究[D]. 兰州:兰州理工大学,2021.
|
|
CAI Wenjuan. Experimental study on screening and degradation characteristics of highly efficient mixed bacteria for bioaugmentation treatment of domestic sewage[D]. Lanzhou:Lanzhou University of Technology,2021.
|
| [30] |
WANG Hailei, LIU Guosheng, LI Ping,et al. The effect of bioaugmentation on the performance of sequencing batch reactor and sludge characteristics in the treatment process of papermaking wastewater[J]. Bioprocess and Biosystems Engineering, 2006, 29(5):283-289. doi: 10.1007/s00449-006-0077-9
|
| [31] |
晋银佳,刘继明,刘彦东,等. 特效菌群构建及其处理兰炭废水试验研究[J]. 工业用水与废水,2024,55(1):16-20.
|
|
JIN Yinjia, LIU Jiming, LIU Yandong,et al. Experimental study on specific bacterial community construction and its effect on semi-coke wastewater treatment[J]. Industrial Water & Wastewater,2024,55(1):16-20.
|
| [32] |
JIN Ruofei, YANG Hua, ZHANG Aili,et al. Bioaugmentation on decolorization of C. I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109(pGEX-AZR)[J]. Journal of Hazardous Materials, 2009, 163(2/3):1123-1128. doi: 10.1016/j.jhazmat.2008.07.067
|
| [33] |
郑杨春,邓旭,李清彪,等. 高选择性重组菌在含Hg2+环境中的生长富集Hg2+耦合及其连续处理Hg2+废水[J]. 厦门大学学报(自然科学版),2005,44():98-101.
|
|
ZHENG Yangchun, DENG Xu, LI Qingbiao,et al. Simultaneous growth and bioaccumulation of mercuric ion by genetically engineered E. coli and its continuous treatment[J]. Journal of Xiamen University(Natural Science),2005,44(S1):98-101.
|
| [34] |
KE Zhuang, WANG Shen, DAI Weixian,et al. Engineering of the chloroaniline-catabolic plasmid pDCA-1 and its potential for genetic bioaugmentation[J]. International Biodeterioration & Biodegradation, 2022, 172:105435. doi: 10.1016/j.ibiod.2022.105435
|
| [35] |
ZHAO Siyan, ROGERS M J, DING Chang,et al. Interspecies mobility of organohalide respiration gene clusters enables genetic bioaugmentation[J]. Environmental Science & Technology,2024,58(9):4214-4225.
|
| [36] |
MCCLURE N C, WEIGHTMAN A J, FRY J C. Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated-sludge unit[J]. Applied and Environmental Microbiology, 1989, 55(10):2627-2634. doi: 10.1128/aem.55.10.2627-2634.1989
|
| [37] |
常晓宇,季蕾,黄玉杰,等. 石油烃微生物降解基因及其工程菌应用研究进展[J]. 中国环境科学,2023,43(8):4305-4315.
|
|
CHANG Xiaoyu, JI Lei, HUANG Yujie,et al. Research on the application of petroleum hydrocarbon degradation genes and their recombinant bacteria[J]. China Environmental Science,2023,43(8):4305-4315.
|
| [38] |
ROTTINGHAUS A G, FERREIRO A, FISHBEIN S R S,et al. Genetically stable CRISPR-based kill switches for engineered microbes[J]. Nature Communications, 2022, 13:672. doi: 10.1038/s41467-022-28163-5
|
| [39] |
杨宝贞. 可调控自裂解大肠杆菌菌株构建[D]. 石家庄:河北经贸大学,2021.
|
|
YANG Baozhen. Construction of the regulate self-cleaving Escherichia Coli strain[D]. Shijiazhuang:Hebei University of Economics and Business,2021.
|
| [40] |
HOSOKAWA R, NAGAI M, MORIKAWA M,et al. Autochthonous bioaugmentation and its possible application to oil spills[J]. World Journal of Microbiology and Biotechnology, 2009, 25(9):1519-1528. doi: 10.1007/s11274-009-0044-0
|
| [41] |
WATANABE K, TERAMOTO M, HARAYAMA S. Stable augmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium[J]. Environmental Microbiology, 2002, 4(10):577-583. doi: 10.1046/j.1462-2920.2002.00342.x
|
| [42] |
LI Jibing, LUO Chunling, ZHANG Dayi,et al. Autochthonous bioaugmentation-modified bacterial diversity of phenanthrene degraders in PAH-contaminated wastewater as revealed by DNA-stable isotope probing[J]. Environmental Science & Technology, 2018, 52(5):2934-2944. doi: 10.1021/acs.est.7b05646
|
| [43] |
GAST C J V D, WHITELEY A S, THOMPSON I P. Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid[J]. Environmental Microbiology, 2004, 6(3):254-263. doi: 10.1111/j.1462-2920.2004.00566.x
|
| [44] |
徐昊,魏洲,赵玛丽,等. 提高城市污水处理系统硝化作用的生物强化技术[J]. 山东化工,2023,52(15):227-230.
|
|
XU Hao, WEI Zhou, ZHAO Mali,et al. Bio-enhanced technology for improving nitrification in urban sewage treatment system[J]. Shandong Chemical Industry,2023,52(15):227-230.
|
| [45] |
RAHMAN T U, ROY H, ISLAM M R,et al. The advancement in membrane bioreactor(MBR) technology toward sustainable industrial wastewater management[J]. Membranes, 2023, 13(2):181. doi: 10.3390/membranes13020181
|
| [46] |
CHEN Liuzhou, QIN Jiangzhou, ZHAO Quanlin,et al. Treatment of dairy wastewater by immobilized microbial technology using polyurethane foam as carrier[J]. Bioresource Technology, 2022, 347:126430. doi: 10.1016/j.biortech.2021.126430
|
| [47] |
JI Jing, KULSHRESHTHA S, KAKADE A,et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater[J]. International Biodeterioration & Biodegradation, 2020, 150:104939. doi: 10.1016/j.ibiod.2020.104939
|
| [48] |
MAZUMDER A,DAS S,SEN D,et al. Kinetic analysis and parametric optimization for bioaugmentation of oil from oily wastewater with hydrocarbonoclastic Rhodococcus pyridinivorans F5 strain[J]. Environmental Technology & Innovation, 2020, 17:100630. doi: 10.1016/j.eti.2020.100630
|
| [49] |
YU Xuan, SHI Juanjuan, KHAN A,et al. Immobilized-microbial bioaugmentation protects aerobic denitrification from heavy metal shock in an activated-sludge reactor[J]. Bioresource Technology, 2020, 307:123185. doi: 10.1016/j.biortech.2020.123185
|
| [50] |
SUN Ronglin, JIN Yue. Pilot scale application of a ceramic membrane bioreactor for treating high-salinity oil production wastewater[J]. Membranes, 2022, 12(5):473. doi: 10.3390/membranes12050473
|
| [51] |
郑瑞欣. 水污染治理中生物强化技术应用分析[J]. 皮革制作与环保科技,2022,3(17):25-27.
|
|
ZHENG Ruixin. Analysis on application of biofortification technology in water pollution treatment[J]. Leather Manufacture and Environmental Technology,2022,3(17):25-27.
|
| [52] |
CAO Xianhe, HU Chengcheng, SUN Xianyun,et al. Long-term stability of reactor microbiome through bioaugmentation with Alcaligenes aquatilis AS1 promotes nitrogen removal of piggery wastewater[J]. Journal of Environmental Management, 2023, 330:117146. doi: 10.1016/j.jenvman.2022.117146
|
| [53] |
韩晶晶. 生物强化技术用于水污染治理的实践研究[J]. 科技资讯,2023,21(12):153-156.
|
|
HAN Jingjing. Practical research on the application of bioaugmentation technology in water pollution control[J]. Science & Technology Information,2023,21(12):153-156.
|
| [54] |
YUAN Ye, YU Yin, XI Hongbo,et al. Comparison of four test methods for toxicity evaluation of typical toxicants in petrochemical wastewater on activated sludge[J]. Science of the Total Environment, 2019, 685:273-279. doi: 10.1016/j.scitotenv.2019.05.389
|
| [55] |
THOBEJANE M P, VAN BLERK N, WELZ P J. Influence of seasonality,wastewater treatment plant process,geographical location and environmental parameters on bacterial community selection in activated sludge wastewater treatment plants treating municipal sewage in South Africa[J]. Environmental Research, 2023, 222:115394. doi: 10.1016/j.envres.2023.115394
|
| [56] |
YU Guanlong, CHEN Huifang, CHEN Jundan,et al. Enhanced nitrogen removal through aerobic denitrifying bacteria in horizontal subsurface flow constructed wetlands:Influencing factors and microbial community structure[J]. Chemical Engineering Journal, 2024, 481:148654. doi: 10.1016/j.cej.2024.148654
|
| [57] |
MA Huilin, ZHAO Yingxin, YANG Kaichao,et al. Application oriented bioaugmentation processes:Mechanism,performance improvement and scale-up[J]. Bioresource Technology, 2022, 344:126192. doi: 10.1016/j.biortech.2021.126192
|
| [58] |
SONG Jianyang, WANG Chunyan, PENG Haojin,et al. Optimization of aeration rate:Low cost but high efficiency operation of aniline-degrading bioaugmentation reactor[J]. Water, 2022, 14(24):4096. doi: 10.3390/w14244096
|
| [59] |
GAO Linjun, WANG Shuya, XU Xu,et al. Metagenomic analysis reveals the distribution,function,and bacterial hosts of degradation genes in activated sludge from industrial wastewater treatment plants[J]. Environmental Pollution, 2024, 340:122802. doi: 10.1016/j.envpol.2023.122802
|
| [60] |
MEI Ran, LIU W T. Meta-omics-supervised characterization of respiration activities associated with microbial immigrants in anaerobic sludge digesters[J]. Environmental Science & Technology, 2022, 56(10):6689-6698. doi: 10.1021/acs.est.2c01029
|
| [61] |
LI Jing, ZHAO Huimiao, ZHENG Lanxin,et al. Advances in synthetic biology and biosafety governance[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:598087. doi: 10.3389/fbioe.2021.598087
|